
www.manaraa.com

Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

6-16-2016

Synaptic Annealing: Anisotropic Simulated
Annealing and its Application to Neural Network
Synaptic Weight Selection
Justin R. Fletcher

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Fletcher, Justin R., "Synaptic Annealing: Anisotropic Simulated Annealing and its Application to Neural Network Synaptic Weight
Selection" (2016). Theses and Dissertations. 459.
https://scholar.afit.edu/etd/459

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/459?utm_source=scholar.afit.edu%2Fetd%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

www.manaraa.com

SYNAPTIC ANNEALING: ANISOTROPIC
SIMULATED ANNEALING AND ITS

APPLICATION TO NEURAL NETWORK
SYNAPTIC WEIGHT SELECTION

THESIS

Justin Fletcher, First Lieutenant, USAF

AFIT-ENG-MS-16-J-060

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

www.manaraa.com

The views expressed in this document are those of the author and do not re�ect the
o�cial policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

www.manaraa.com

AFIT-ENG-MS-16-J-060

SYNAPTIC ANNEALING: ANISOTROPIC SIMULATED ANNEALING AND ITS

APPLICATION TO NEURAL NETWORK SYNAPTIC WEIGHT SELECTION

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Ful�llment of the Requirements for the

Degree of Master of Science in Computer Science

Justin Fletcher, B.S.C.E.

First Lieutenant, USAF

June 2016

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

www.manaraa.com

AFIT-ENG-MS-16-J-060

SYNAPTIC ANNEALING: ANISOTROPIC SIMULATED ANNEALING AND ITS

APPLICATION TO NEURAL NETWORK SYNAPTIC WEIGHT SELECTION

THESIS

Justin Fletcher, B.S.C.E.
First Lieutenant, USAF

Committee Membership:

Dr. Michael J. Mendenhall
Co-Chairman

Dr. Gilbert L. Peterson
Co-Chairman

Dr. Mathew C. Fickus
Committee Member

www.manaraa.com

AFIT-ENG-MS-16-J-060

Abstract

Machine learning algorithms have become a ubiquitous, indispensable part of mod-

ern life. Neural networks are one of the most successful classes of machine learning

algorithms, and have been applied to solve problems previously considered to be the

exclusive domain of human intellect. Several methods for selecting neural network

con�gurations exist. The most common such method is error back-propagation. Back-

propagation often produces neural networks that perform well, but do not achieve an

optimal solution.

This research explores the e�ectiveness of an alternative feed-forward neural net-

work weight selection procedure called synaptic annealing. Synaptic annealing is the

application of the simulated annealing algorithm to the problem of selecting synaptic

weights in a feed-forward neural network. A novel formalism describing the combina-

tion of simulated annealing and neural networks is developed. Additionally, a novel

extension of the simulated annealing algorithm, called anisotropicity, is de�ned and

developed.

The cross-validated performance of each synaptic annealing algorithm is evalu-

ated, and compared to back-propagation when trained on several typical machine

learning problems. Synaptic annealing is found to be considerably more e�ective

than traditional back-propagation training on classi�cation and function approxi-

mation data sets. These signi�cant improvements in feed-forward neural network

training performance indicate that synaptic annealing may be a viable alternative to

back-propagation in many applications of neural networks.

iv

www.manaraa.com

Acknowledgements

This thesis is the product of hundreds of small investments, made by dozens of

people, over the past two years.

To Eric, Bill, Ben, Jason, Olivia, Matt, Jose, James, Geo�, Ian, and Jacob: you

are the best friends I could ask for. Your guidance and encouragement made this

work possible. During the hardest times, I always knew that I could go to the quad

for a laugh and a talk.

I thank Dr. Mendenhall for his tireless support, tolerance of long meetings, and

boundless enthusiasm for research. Without your guidance, I would not be on the

path I'm on today, and this thesis wouldn't exist.

Finally, and most importantly, I thank my loving wife. You are my best friend and

greatest supporter. I wouldn't have made it through this without you. The success of

this research is the direct result of many meals served at my desk, hundreds of small

encouragements when I was overwhelmed, and a thousand gentle reminders to �get

back to work.� Thank you, for everything.

Justin Fletcher

v

www.manaraa.com

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . xiv

I. Introduction . 1

1.1 Problem Statement . 2
1.2 Scope . 3
1.3 Document Organization . 4

II. Background . 5

2.1 Arti�cial Neural Networks . 5
Historical Overview . 6
Network Topology . 15
Activation Functions . 16
Learning Strategies . 16

2.2 Related Works in Simulated Annealing . 23
Variants of Simulated Annealing . 27
Reannealing . 28

2.3 Relevant Concepts in Quantum Mechanics . 28
2.4 Summary . 29

III. Methodology . 31

3.1 Simulated Annealing . 31
Visiting Distributions . 32
Anisotropicity Policies . 41

3.2 Feed-Forward Neural Network Representation . 41
3.3 Applying Simulated Annealing to Feed-Forward Neural

Network Weight Modi�cation . 44
Synaptic Annealing Neighborhood Functions . 44
Feed-Forward Neural Network Anisotropicity Policies 48

3.4 Cost Functions . 50
Regression Error Cost Function . 50
Classi�cation Error Cost Function . 51

3.5 Synaptic Annealing Algorithm Speci�cation . 51
3.6 Weight Space Traversal . 52

vi

www.manaraa.com

Page

Gaussian Neighborhood Function Weight Space
Traversal . 54

Cauchy Neighborhood Function Weight Space Traversal 56
Isotropic GSA Neighborhood Function Weight Space

Traversal . 58
Anisotropic GSA Neighborhood Function Weight Space

Traversal . 59
Uniform Neighborhood Function Weight Space Traversal 61
Comparing Weight Space Traversal Methods . 62

IV. Experimental Results and Analysis . 65

4.1 Design of Experiments . 65
Data Sets . 65
Performance Evaluation . 69
Con�guration . 71

4.2 Experiment Results . 74
Classi�cation Results . 74
Regression Results . 80

4.3 Back-Propagation Comparison . 82
4.4 Summary . 84

V. Conclusion . 86

5.1 Summary of Methods, Results, and Conclusions . 86
5.2 Future Work . 87

Methodology Extensions . 87
Hybrid Greedy Search Techniques . 88
Reannealing . 88
Novel Anisotropicity Policies . 88

5.3 Contributions . 89

Appendix A. Recursively-De�ned Dot Product Neural Network
Propagation . 90

1.1 Mathematical Framework . 90
1.2 Application to Feed-Forward Neural Networks . 100
1.3 Implementation Considerations . 104

vii

www.manaraa.com

List of Figures

Figure Page

1. A simple perceptron. 7

2. (Top) The probability density function of a generic
quantum system in the presence of a potential energy
step barrier. There is an exponential decrease in
probability through the barrier, and a uniform
probability beyond the barrier. (Bottom) A simple
step potential in one dimension. 30

3. (Left) A potential energy barrier on a one-dimensional
potential energy surface. (Right) The tunneling
probability relative to the probability of traversal due to
thermal �uctuation for a step barrier plotted as a
function of the height and width of the barrier. 34

4. This �gure comprises four plots, each of which displays
a GSA distribution at various values of TqV , in order to
illustrate the behavior of the GSA distribution for
several values of qV . This �gure shows the GSA near
the mean, which illustrates the e�ect of qv and TqV on
the near-mean domain values, while neglecting the
e�ects on the tails of the distribution. 37

5. This �gure comprises four plots, each of which displays
a GSA distribution at various values of TqV , in order to
illustrate the behavior of the GSA distribution for
several values of qV . This �gure shows the GSA
distribution for domain values far from the mean, which
illustrates the e�ect of qv and TqV on the tails of the
distribution. 39

6. (Left) An arbitrary feed-forward ANN. (Right) The
weight matrix representation of the feed-forward ANN
in (Left). 41

7. The feed-forward neural network used in the weight
space traversal evaluations. 53

viii

www.manaraa.com

Figure Page

8. (Left) A plot showing the traversal of the w1, w2

subspace of the weight space over the course of 5, 000
epochs produced by a synaptic annealing algorithm
employing a Gaussian visiting distribution. A solid line
indicates a move which was accepted by the simulate
annealing algorithm, while a dashed line indicates a
move which was rejected. In this �gure, only a few
rejected moves are visible. The word start indicates the
initial value of (w1, w2), while the word end denotes the
�nal value. (Right-Top) A plot showing the both the
training and validation MSE of the results produced by
the neural network in each epoch, smoothed using a
central moving window average with a width of 21. This
is the post-perturbation error, meaning that the error
associated with moves that were rejected is shown.
(Right-Bottom) A plot showing the sum of squared
weights of the neural network during each training epoch. 55

9. (Left) A plot showing the traversal of the w1, w2

subspace of the weight space over the course of 5, 000
epochs produced by a synaptic annealing algorithm
employing a Cauchy visiting distribution. A solid line
indicates a move which was accepted by the simulate
annealing algorithm, while a dashed line indicates a
move which was rejected. In this �gure, only a few
rejected moves are visible. The word start indicates the
initial value of (w1, w2), while the word end denotes the
�nal value. (Right-Top) A plot showing the both the
training and validation MSE of the results produced by
the neural network in each epoch, smoothed using a
central moving window average with a width of 21. This
is the post-perturbation error, meaning that the error
associated with moves that were rejected is shown.
(Right-Bottom) A plot showing the sum of squared
weights of the neural network during each training epoch. 57

ix

www.manaraa.com

Figure Page

10. (Left) A plot showing the traversal of the w1, w2

subspace of the weight space over the course of 5, 000
epochs produced by a synaptic annealing algorithm
employing an isotropic GSA visiting distribution. A
solid line indicates a move which was accepted by the
simulate annealing algorithm, while a dashed line
indicates a move which was rejected. In this �gure, only
a few rejected moves are visible. The word start
indicates the initial value of (w1, w2), while the word
end denotes the �nal value. (Right-Top) A plot
showing the both the training and validation MSE of
the results produced by the neural network in each
epoch, smoothed using a central moving window
average with a width of 21. This is the
post-perturbation error, meaning that the error
associated with moves that were rejected is shown.
(Right-Bottom) A plot showing the sum of squared
weights of the neural network during each training epoch. 59

11. (Left) A plot showing the traversal of the w1, w2

subspace of the weight space over the course of 5, 000
epochs produced by a synaptic annealing algorithm
employing a GSA visiting distribution with synaptic
weight-based anisotropicity. A solid line indicates a
move which was accepted by the simulate annealing
algorithm, while a dashed line indicates a move which
was rejected. In this �gure, only a few rejected moves
are visible. The word start indicates the initial value of
(w1, w2), while the word end denotes the �nal value.
(Right-Top) A plot showing the both the training and
validation MSE of the results produced by the neural
network in each epoch, smoothed using a central
moving window average with a width of 21. This is the
post-perturbation error, meaning that the error
associated with moves that were rejected is shown.
(Right-Bottom) A plot showing the sum of squared
weights of the neural network during each training epoch. 60

x

www.manaraa.com

Figure Page

12. (Left) A plot showing the traversal of the (w1, w2)
subspace of the weight space over the course of 5, 000
epochs produced by a synaptic annealing algorithm
employing a visiting distribution which is uniform over
the range

[
−1

2
, 1

2

]
. A solid line indicates a move which

was accepted by the simulate annealing algorithm, while
a dashed line indicates a move which was rejected. In
this �gure, only a few rejected moves are visible. The
word start indicates the initial value of (w1, w2), while
the word end denotes the �nal value. (Right-Top) A
plot showing the both the training and validation MSE
of the results produced by the neural network in each
epoch, smoothed using a central moving window
average with a width of 21. This is the
post-perturbation error, meaning that the error
associated with moves that were rejected is shown.
(Right-Bottom) A plot showing the sum of squared
weights of the neural network during each training epoch. 62

13. (Left) A plot juxtaposing the weight space traversals of
produced by a synaptic annealing algorithm employing
several di�erent visiting distributions. 63

14. (Left) A plot displaying the surface produced by the
complicated interaction function, fCI, in two dimensions
(u1, u2). (Right) A color contour plot of the
complicated interaction function. 68

15. (Left) A plot displaying the surface produced by the
harmonic function, fH , in two dimensions (u1, u2).
(Right) A color contour plot of the harmonic function. 69

16. Classi�cation error vs. training epoch, where µ+ σ are
reported for each of the three classi�cation problems
(Wine-blue, Iris-green, and Cancer-red), for synaptic
annealing using a Gaussian neighborhood function with
a (Left) regression and (Right) classi�cation training
error function. 76

xi

www.manaraa.com

Figure Page

17. Classi�cation error vs. training epoch, where µ+ σ are
reported for each of the three classi�cation problems
(Wine-blue, Iris-green, and Cancer-red), for synaptic
annealing using a Cauchy neighborhood function with a
(Left) regression and (Right) classi�cation training
error function. 78

18. Classi�cation error vs. training epoch, where µ+ σ are
reported for each of the three classi�cation problems
(Wine-blue, Iris-green, and Cancer-red), for synaptic
annealing using a GSA neighborhood function with a
(Left) regression and (Right) classi�cation training
error function. 79

19. Classi�cation error vs. training epoch, where µ+ σ are
reported for each of the three classi�cation problems
(Wine-blue, Iris-green, and Cancer-red), for synaptic
annealing using an anisotropic GSA neighborhood
function with a (Left) regression and (Right)
classi�cation training error function. 80

20. This �gure contains one plot for each variant of the
synaptic annealing training algorithm. Each plot
displays the time evolution of the 10-fold cross validated
mean and standard deviation of the regression error of
neural networks trained using a single synaptic
annealing variant on each of the the function
approximation data sets. The synaptic annealing
variants used in each plot are (Left-Top) Isotropic
Gaussian, (Right-Top) Isotropic Cauchy,
(Left-Bottom) Isotropic GSA, and (Right-Bottom)
Anisotropic GSA. 81

21. The classi�cation error (µ+ σ) vs. training epochs for
several FFNN training algorithms for the (Left-Top)
Wine, (Right-Top) Iris, and (Bottom) Cancer
classi�cation data sets. 83

22. (Left) A visualization of ω corresponding to a
feed-forward neural network. (Right) A visualization of
ω corresponding to a recursive neural network. 91

xii

www.manaraa.com

Figure Page

23. (Left) The running time of the Algorithm 3 in n, the
number of neurons in the network. (Right) The
running time of the Algorithm 3 in ns, the number of
synaptic weights in the network, which, in this network
is equal to n2 − n. 100

24. (Left) The running time of the Algorithm 3, employing
a layer matrix representation, in n, which is the number
of neurons in the network. (Right) The running time
of the Algorithm 3, employing a layer matrix
representation, in ns, which is the number of synaptic
weights in the network. 102

25. The speedup obtained by employing the layer matrix
version of the dot propagation algorithm, relative to the
weight matrix version of the algorithm, for a
feed-forward neural network. The speedup was
calculated for networks of varying depth and size. 103

xiii

www.manaraa.com

List of Tables

Table Page

1. Training and Validation Set Mean Squared Error at
Epoch 5, 000 . 64

2. A summary of each of the classi�cation data sets . 66

3. This table lists the parameters chosen for the synaptic
annealing experiments. 74

4. The mean classi�cation error using the regression
training cost function. 75

5. The mean classi�cation error using the classi�cation
training cost function. 76

6. This lists of parameter values chosen for the synaptic
annealing experiments. 82

xiv

www.manaraa.com

SYNAPTIC ANNEALING: ANISOTROPIC SIMULATED ANNEALING AND ITS

APPLICATION TO NEURAL NETWORK SYNAPTIC WEIGHT SELECTION

I. Introduction

Machine learning algorithms are ubiquitous in modern life; rarely is any signi�cant

decision made without �rst consulting a machine learning algorithm. From the most

trivial of decisions, such as an individual deciding where to eat for dinner or choosing

an entertainment source [1], to the most consequential, such as deciding where the

nation should invest its defense budget, machine learning algorithms in�uence and

inform choices. Through vectors such as search engines [2], content recommenders

[1], arti�cial intelligence in adversary behavior models, actuarial models in insurance

estimation, market prediction agents, and many more [3], machine learning permeates

nearly every modern human endeavor. It seems reasonable to speculate that most

people consult at least one machine learning algorithm every day before breakfast, if

for no other reason, than to know what the weather will be like. The prevalence of

these algorithms attests to their usefulness. Machine learning algorithms have made it

possible to analyze data on a scale which would have been impossible in their absence,

and thereby enabled the advancement of science in several �elds [4]. They have also

spawned entire business models which add value for consumers and producers alike.

There are many machine learning algorithms [5, 6]. This thesis focuses on one:

neural networks, and in particular, the feed-forward neural network (FFNN). Neural

networks are solving problems previously thought to be beyond the capability of any

machine; with every advance, the range of activities exclusively in the purview of

human intellect recedes further. Today, neural networks are capable of, among other

1

www.manaraa.com

things, extracting patterns from data, classifying observations of data based on past

exposure to similar data, and approximating arbitrarily complex functions. The rel-

atively recent advent of deep networks has hastened progress in the �eld [7]. Deep

neural networks have been constructed which are able to play some video games with

performance exceeding that of the professional human player [8], and can determine

the location an image was taken using only the image [9]. These results are encour-

aging, as they indicate that neural networks may be capable of obtaining still greater

feats of reasoning.

The central concern of the �eld of neural networks is the problem of constructing

a network that is able to do some useful task. There are many variants of neural

networks, but many of them share a common learning algorithm: back-propagation.

Though e�ective, all neural networks employing back-propagation share a common

limitation, known as the local minima problem. Because back-propagation is a local

gradient descent algorithm, it is possible that the algorithm will descend into a region

of the cost surface which is a local minimum, rather than the global minimum. If

this occurs, and there is no procedure in place to enable an escape from the minima,

it will not be possible to improve the performance of the neural network further.

Some techniques which minimize the impact of the local minima problem, such as

momentum [10], have become standard in most back-propagation implementations.

In order to overcome the local minima problem entirely, an alternative neural network

weight selection algorithm, called synaptic annealing, is developed in this thesis.

1.1 Problem Statement

The goal of this thesis is to design a set of formalisms describing the operation

of simulated annealing on the synaptic weights of a FFNN, to construct a software

system which realizes those formalisms, to apply that software system to several

2

www.manaraa.com

machine learning problems, and to evaluate the performance of the system on those

problems. While previous work has explored this synthesis of algorithms [11, 12], a

review of the literature reveals no work that analyses the combination of simulated

annealing and FFNNs to the depth that the topic is explored in this thesis. Specially,

this thesis considers many variants of simulated annealing, as well as a novel extension

of the simulated annealing algorithm, and compares their resultant performance on

several machine learning problems.

1.2 Scope

The number of possible variations of implementation that can be attempted to

accomplish the goals set out in the preceding section is very large. As such, it is

important to explicitly state the scope of the work addressed in this thesis. Though

the scope of the work is relatively broad, the work is limited to the accomplishment

of the following objectives:

• Construct a consistent set of formalisms that unambiguously describes the appli-

cation of simulated annealing to the problem of neural network weight selection.

• Implement all necessary software systems needed to realize a system that per-

forms simulated annealing to select the weights of a FFNN, such that some cost

function is minimized.

• Design a series of experiments that explore the cost-function minimization per-

formance of the system on a set of standard machine learning data sets.

• Compare the �nal performance of each of the constructed algorithms to that

of a well-constructed back-propagation algorithm, in order to ensure that an

improvement in classi�cation accuracy has been achieved.

3

www.manaraa.com

1.3 Document Organization

This document is divided into �ve chapters. Chapter II is a literature review

comprising discussions of the historical origins of arti�cial neural networks as well as

some modern applications, simulated annealing and the many variants thereof, and

all previous work applying simulated annealing to arti�cial neural network weight

selection. Chapter III presents the methodology used in this thesis to apply simulated

annealing to neural network weight selection. The formalisms describing the proposed

annealing system are constructed abstractly, then applied to the problem of weight

selection. Finally, some preliminary performance exploration is conducted in order

to characterize the weight space traversal characteristics of each annealing system.

Chapter IV describes the design and results of several experiments which characterize

the performance of each synaptic annealing algorithm. Finally, Chapter V concludes

the thesis with a brief overview of �ndings and contributions, as well as suggested

future work.

4

www.manaraa.com

II. Background

This chapter serves as a review of the physical and computational concepts founda-

tional to this thesis. A broad overview of arti�cial neural networks and the application

and history thereof is presented. Next, several formulations of simulated annealing

are described, along with a summary of related works and a description of the phys-

ical inspiration for the algorithm. The chapter concludes with a very brief overview

of the quantum mechanics, with emphasis placed on those concepts used throughout

the document.

2.1 Arti�cial Neural Networks

It has long been recognized that the capacity of biological information processing

systems to �exibly and quickly process large quantities of data greatly exceeds that

of sequential computing machinery. [10] This information processing capability arises

from the complex, nonlinear, parallel nature of biological information processors. The

family of models designed to replicate this powerful information processing architec-

ture are collectively called arti�cial neural networks (ANNs). In the most general

sense, ANNs are parallel distributed information processors [10] comprising many

simple processing elements. Networks store information about experienced stimuli

in the form of connection strengths and network topology, and can make that infor-

mation available. In such a network, inter-neuron connection strengths are used to

encode information, and are modi�ed via a learning strategy. ANNs are character-

ized by three features: a network topology or architecture, an activation function,

and a learning strategy; each is discussed in the following sections. First, however,

an abbreviated history of ANNs is provided.

5

www.manaraa.com

Historical Overview.

The study of ANNs began with a 1943 paper [13] by McCulloch and Pitts. In this

paper, McCulloch and Pitts united, for the �rst time, neurophysiology and formal

logic in a model of neural activity. This landmark paper marked the beginning of,

not only the computational theory of neural networks, but also the computational

theory of mind, and eventually led to the notion of �nite atomata [14]. In [13]

McCulloch and Pitts introduced a very simple model of a neuron, which acted as a

threshold-based propositional logic unit. Signi�cantly, McCulloch and Pitts showed

that a network of their neuron models, interconnected, could represent a proposition of

arbitrarily-high complexity. Said di�erently, a network of the neuron models described

in [13] can represent any logical proposition. These models, often called McCulloch-

Pitts neurons, permit only discrete input values that are summed and compared

to a threshold value during a �xed time quantum, and do not posses any learning

mechanism. McCulloch-Pitts neurons are able to incorporate inhibitory action, but

the action is absolute and inhibits the activation of the neuron without regard to any

other considerations. The McCulloch-Pitts neuron model is of theoretical signi�cance,

but cannot be applied to practical problems.

Though McCulloch and Pitts made mention of learning in their 1943 paper, thir-

teen years would pass before the learning concept was formalized into a mathematical

and computational model. In 1956 Rochester, et al. [15] presented the �rst attempt at

using a physiologically-inspired learning rule to update the synaptic weights of a neu-

ral network. This model was based on the correlation learning rule postulated in 1949

by Hebb1. In his book The Organization of Behavior, Hebb suggested that synaptic

plasticity, the capacity of synaptic strengths to change, is driven by metabolic and

1It should be mentioned that, while Hebb was the �rst to postulate the correlation learning rule
as it relates to neurons and synaptic connection strength, the abstract rule was foreshadowed as
early as 1890 by William James [16] in Chapter XVI of Psychology (Briefer Course).

6

www.manaraa.com

Input Data 1

Input Data 2

Input Data 3

Input Data 4

Output Data

Output Data

Output Data

Output
Layer

Input
Layer

Figure 1. A simple perceptron.

structural changes in the both neurons near the synaptic cleft [17] such that if two

cells often �red simultaneously, the e�ciency with which they cause one another to

�re will increase. This e�ciency is now called a synaptic weight. Rochester et. al.

showed that the addition of variable synaptic weights alone was not su�cient to pro-

duce a network capable of learning; the weights must also be capable of assuming

inhibitory values.

The next major contribution to the �eld would come in 1958 with Rosenblatt's

introduction of the simple perceptron [18]. The perceptron, shown in Fig. 1, was the

�rst [19] well-formed, computationally-oriented neural network. Crucially, and unlike

most preceding neural models, the model Rosenblatt presented in his 1958 paper was

associative. That is, the model learned to associate stimuli with a response. This

learning is accomplished by modifying the synaptic weights such that the di�erence

between an input pattern and the desired output pattern is minimized. The responsi-

bility for the error, or di�erence between the correct and computed output patterns,

is divided among the weights in proportion to their magnitude. Thus, large synaptic

weights are reduced more than small synaptic weights for a large, positive error. This

weight update strategy is represented mathematically as:

wi(t+ 1) = wi(t) + α(t)(dj − yj)xj (1)

7

www.manaraa.com

where wi(t) the synaptic weight for feature i at discrete time t, α is the tunable

learning rate parameter, dj is the desired output, yj is the computed output, and xj

is the input pattern. This method constitutes a form of reinforcement learning.

Rosenblatt's perceptron was found to be successful at predicting the correct re-

sponse class for stimuli only if the responses were correlated. It was not until Block's

1962 publication [20] that the reason for this observed performance was elucidated.

Block presented two key �ndings: �rst, that simple perceptrons require linearly sepa-

rable classes to achieve perfect classi�cation and second, the perceptron convergence

theorem [20]. Linear separability is the ability of the response classi�cations to be

separated by a hyperplane in the n-dimensional space of the input stimuli to which

they correspond. The requirement of linear separability arises directly from the way

in which the output of a perceptron response unit is calculated. The output of a

simple perceptron response unit is given by the hard limiter function:

yj =


−1

∑n
i=1wi,jxi ≤ Θ

+1
∑n

i=1wi,jxi > Θ

(2)

where yj is the response value of response unit j, wi,j is the synaptic weight of the

connection between activation unit i and response unit j, xi is the activation value

of activation unit i, and Θ is the threshold value of the perceptron. Block's crucial

observation was that the form of the summation in the response determining equation

is isomorphic to a hyperplane in an n-dimensional space. Thus, in order for the per-

ceptron to achieve perfect classi�cation, a hyperplane must be able to separate them

in the n-dimensional input space. The corollary of this observation is the perceptron

convergence theorem. The theorem proves that, for some learning rules, if a perfect

classi�cation is possible it will be found by the perceptron. Speci�cally, the class

of learning rules which were found e�ective were those that do not change synaptic

8

www.manaraa.com

weights when a correct classi�cation occurs. While the condition does ensure con-

vergence, it often causes very slow convergence, as the synaptic weights change much

more slowly when only a small number of samples remain misclassi�ed. Consider-

ably faster guaranteed convergence can be achieved using an error gradient descent

learning rule [21], as described by Widrow and Ho�.

In 1969 Minksy and Papert published Perceptrons [22], a book on mathematics

and theory of computation. In this book, Minsky and Papert mathematically and

geometrically analyzed the limitations inherent in the perceptron model of computa-

tion. The authors reasoned that the each response unit of Rosenblatt's perceptrons

was actually computing logical predicates about the inputs it received, based on the

observation that response units can either be active or inactive. This analytical frame-

work allowed the authors to construct unprecedented geometric and logical arguments

about the computational capabilities of a perceptron. They found that there were

several classes of problems which were unsolvable by linear perceptrons [22]. In the

�nal chapter of Perceptrons, Minsky and Papert extended their judgments regarding

the ine�ectiveness of single-layered perceptrons to all variants of perceptrons, includ-

ing the multi-layered variety. This conjecture would turn out to be one of the most

signi�cant of the entire book, as it likely resulted in a reduction of funding for neural

network research [19] which lasted for several years. However, this judgment was

incorrect.

While it is true that the pace of development in the �eld of neural networks

slowed considerably after the publication of Perceptrons, there was still progress made

during the 1970s. In 1972, both Anderson [23] and Kohonen [24] published models

of what would come to be known as linear associative neural networks, which are

a generalization of Rosenblatt's perceptron. As with the perceptron, neurons in a

linear associative neural network compute their output by summing the product of

9

www.manaraa.com

each input signal and the synaptic weight associated with that input. Unlike the

perceptron, the output of these networks is proportional to this sum, rather than a

binary value computed by applying a threshold function to the sum. Though still

unable to achieve perfect classi�cation on many classes of problems, these networks

were able to successfully associate input patterns with output patterns.

The decade also saw the advent of self-organized maps, which are a type of compet-

itive learning neural network. Self-organization in neural networks was �rst demon-

strated by van der Malsburg [25] published in 1973. This paper analyzed the response

of simulated cortical cells to a simulated visual stimulus. The paper is interesting both

for the complexity of the neural model developed, and because it contained the �rst

direct comparison between computer simulation and physiological data [19].

Throughout the decade progress was also made in the understanding of the physi-

ology of biological neural networks. Of particular interest are those papers describing

the lateral retinal system of Limulus polyphemus, the horseshoe crab. Limulus fea-

tures prominently in the neurophysiological research because of the ease with which

experiments may be conducted on its compound lateral eye. Several works were pub-

lished on the Limulus, perhaps the most signi�cant of which came near the end of

the decade with the 1978 publication of a paper describing the dynamics of the retina

of a Limulus when exposed to moving stimuli [26]. In this paper, the Limulus eye

was analyzed as a linear system, and the results of this analysis were compared to

the actual response of the system to the input pattern. The agreement between the

linear2 model and the biological output signals was found to be in excellent agreement

[26]. This �nding was interesting for the purposes of perceptron simulation, but was

ultimately found not to hold for larger collections of neurons.

2Linear, in this context of this system, means that the output of the system when presented with
the sum of a set of inputs is equivalent to the sum of the outputs of the system when presented with
each input individually.

10

www.manaraa.com

Several events conspired to create a reinvigoration of neural network research

in the early 1980s. In 1982, John Hop�eld published Neural networks and physical

systems with emergent collective computational abilities [27]. This momentous work is

regarded by many to be the beginning of the renaissance of neural network research

[19], and contains many novel insights. Hop�eld begins the paper di�erently than

past researchers. Rather than proposing a learning rule or network topology and

then evaluating the results of this proposition, Hop�eld begins by considering an

alternative purpose for a neural network. Hop�eld suggests that the network be

thought of as a means to develop locally stable points, or attractors, in a state space.

The state space comprises the set of states which are the activation value of each

neuron. Thus, learning should be the process of modifying the synaptic weights such

that they cause the system to �ow into local attractors which represent the desired

output. In such a model, a noisy or incomplete input would result in an activation

pattern that resides on a gradient in the state space. The neural network would then

change the activation pattern in such a way as to move the system down the gradient

into the attractor state. Hop�eld suggests that this process is a general physical

description of the concept of content-addressable memory.

Hop�eld then proposes a network architecture to achieve this behavior [27]. The

chosen model is one which has binary neural output values and recurrent connections.

Neural networks of this types are now called Hop�eld networks. Like Rosenblatt's

original perceptron model, the neurons used in Hop�eld's work had a non-linear

activation function. The network topology was recurrent, with the restriction that no

neuron could provide input to itself. Hop�eld adopted a variation of Hebb's learning

rule to update the synaptic weights.

In Hop�eld's network model [27], the connection strength between two neurons

i and j is denoted as Tij, and the activation status of a neuron i is denoted as

11

www.manaraa.com

Vi. T is therefore the connection matrix of the neural network, with each element

representing an individual connection strength and zeros along the diagonal. It is

from this organization of the connection strengths that one of the most important

insights of this thesis originates. Hop�eld recognized that, in the special case of the

model in which Tij = Tji, a quantity E could be de�ned such that

E = −1

2

∑∑
i 6=j

TijViVj, (3)

where E is a quantity analogous to the energy of an Ising model of a spin glass. The

change in E as a result of a change in one of the activation values, Vi (in the following

equation), is then represented as

∆E = −∆Vi
∑
j 6=i

TijVj. (4)

From Eq. (4), it is clear that any change in Vi will reduce the value of E. This decrease

in E must necessarily continue until some local minimum of the value of E is reached3.

Here, Hop�eld observed that this case is isomorphic with an Ising model, referencing

the statistical mechanical model of magnetic spins. In this isomorphism, the quantity

E maps to the energy of a physical system described by an Ising model. It is di�cult

to overstate the importance of this observation. It both provided a novel mechanism

by which physical theory could be applied to neural networks, and legitimized the

study of neural networks as a physical system, encouraging many physicist to join in

the development of the theory.

Hop�eld constructed a model of the system described in the paper, and presented

it with random input patterns4. He found that the network can indeed recall a

3An identical conclusion would be reached if Vj was changed instead of Vi. It is merely a matter
of convention.

4Hop�eld calls these input patterns entities or Gestalts.

12

www.manaraa.com

small number of patterns, on the order of approximately 15 percent of the network

dimensionality, before the recall error becomes signi�cant.

In 1985, the work by Ackley et al. [28] extended the neural network model proposed

by Hop�eld5. Hop�eld networks are deterministic with respect to energy; by de�nition

any change in a Hop�eld network always reduces the energy of the system or leaves

it the same. This is a useful property if it is acceptable to �nd one of many local

minima, or attractors. However, if a single, global minima in the state space is

sought, this model is likely to converge prematurely to a local attractor state. In

order to surmount this limitation, Ackley et. al. modi�ed the Hop�eld neural model

to activate stochastically. The probability of state transition, p, is given by

p =
1

1 + e−∆E/T
(5)

where ∆E is the change in energy of the system resulting from a transition to a new

state and T is the arti�cial temperature of the system. Thus the relative probability,

Pα/Pβ of moving to either of two arbitrary global states, α and β, is de�ned as

Pα
Pβ

= e−(Eα−Eβ)/T (6)

which is a form isomorphic to the Boltzmann distribution. Thus, a neural network

with transition probabilities described by Eq. (5) is called a Boltzmann machine. The

e�ect of probabilistic state transitions of this form is that state transitions from low

energy states to higher energy states are possible, thereby allowing the system to

escape local minima.

Inspection of Eq. (5) and Eq. (6) reveals that the probability of transition is deter-

mined by both ∆E and T . A large value of ∆E, which corresponds to a large increase

5Though a Hop�eld network was used for the work done by Ackley, Hinton, and Sejnowski it is
not necessary to use a network with recurrent connections.

13

www.manaraa.com

in total energy, will decrease the probability of transition. Conversely, a large value of

T will increase the probability of transition for any arbitrary value of ∆E. The sys-

tems arti�cial temperature therefore acts as a tuning mechanism for the exploration

of the state space. A high arti�cial temperature results in greater exploration of the

state space, but will result in less local gradient descent and therefore may cause the

system to depart the attractor basin of a minima, which may be the global minimum.

A low arti�cial temperature may cause premature convergence. Ackley et. al. [28]

solved this tuning problem by recognizing a deep connection to another concept born

of statistical mechanics: simulated annealing. Simulated annealing decreases the ar-

ti�cial temperature of a system slowly over the course of a simulation, and as a result,

increases the likelihood that the �nal state of the system will be the ground state,

which is to say the global minimum. This algorithm is discussed in detail in Sec. 2.2.

With a procedure for �nding the global minimum of a cost surface embedded in

a state space in place, the authors in [28] proceeded to construct state spaces for

which the global minimum was of interest. One way to construct such a state space

is to include hidden units in the neural network. Hidden units are neural units which

are neither input nor output units. These hidden units allow the network to solve

interesting problems that are out of reach of simple associative neural networks[19].

However, like all neurons in any neural network, the connection weights of these

neurons must be modi�ed in order for the network to learn. It is not immediately

clear how the synaptic weights of hidden unit can be modi�ed to account for the

performance of the network. This de�ciency is often called the credit assignment

problem [29]. The application of simulated annealing in Boltzmann machines avoids

the problem of assigning credit to hidden units, thereby enabling their inclusion in the

model. This is historically signi�cant because it was the �rst successfully-implemented

multi-layered neural network [10].

14

www.manaraa.com

The next major development in neural networks came in 1986 with the introduc-

tion of the back-propagation algorithm. Though the formalisms required involved in

this algorithm had been developed earlier [30, 31], and the method was simultaneously

discovered independently by two other groups [32, 33], it was Rumelhart et al. that

applied the algorithm to machine learning [34]. Back-propagation can be thought

of as a generalization of the gradient descent6 algorithm presented by Widrow and

Ho� [21], which includes the errors associated with connection strength of hidden

units, or internal representation units. A detailed discussion and derivation of the

back-propagation algorithm is included in Section 2.1. Though back-propagation in

multilayered perceptrons cannot be guaranteed to �nd an exactly correct solution,

the algorithm is demonstrably capable of solving di�cult and interesting problems,

thus disproving the speculation of Minsky and Papert in [22].

With the advent of Boltzmann machines and back-propagation, it became pos-

sible to analyze the properties and capabilities of multilayered neural networks. In

1989 Cybenko showed that a multilayer feed-forward neural network (FFNN) with

nonlinear activation function is, in principle, capable of approximating any continu-

ous function [35]. This �nding is striking because it implies that, given the correct

learning rule and a su�ciently large network, a multilayer neural network can learn

a pattern of arbitrary complexity.

Network Topology.

The topology of a neural network describes the way in which the individual pro-

cessing units are interconnected. There are only a few broad classes of topology, each

of which has di�erent properties. A FFNN consists of several successive layers of

processing elements. The input pattern is provided to the �rst layer of the network.

6The gradient descended in this context is the gradient of the error surface in the space of synaptic
weights, not the gradient of the activation state surface, as with a Hop�eld network.

15

www.manaraa.com

This layer, often called the input layer, contains one processing element for each input

pattern element. Each input pattern element is provided to exactly one input layer

processing element, and each input layer processing element is connected to every

processing element in the next layer. The next layer in the network is called the �rst

hidden layer. The input layer is fully connected to the �rst hidden layer. This means

that each processing element in the input layer is connected to each element in the

�rst hidden layer. This fully-connected organization is then repeated between each

successive hidden layer. The �nal layer in the FFNN topology is the output layer.

There is one processing element in the output layer for each element in the output

pattern. The �nal hidden layer is fully connected to the output layer. Feed-forward

neural networks are therefore directed, acyclic L-partite graphs, where L is the num-

ber of layers in the network. The graph describing the topology of a neural network

is often called the underlying graph of the network. Generally, these graphs are often

organized as a left-right model with inputs on the left and outputs on the right.

Activation Functions.

An activation, or transfer function, is the transform applied to the sum of weighted

inputs in each processing element. There are myriad activation functions used in the

neural network literature. In this thesis, the hyperbolic tangent function is used, and

is shown in Fig. ??.

Learning Strategies.

Very simple neural networks may be constructed by hand to solve simple problems.

To encode more complex mappings, automated procedures are used to modify neural

network parameters. These procedures, called learning strategies, generally involve

the modi�cation of synaptic weights in the neural network, such that the modi�ca-

16

www.manaraa.com

tions minimize a cost function. This section discusses two such learning strategies.

This �rst algorithm, back-propagation, is a widely-used gradient descent method for

minimizing the error in the output of a neural network. The second, which is the topic

of this thesis, is the application of metaheuristic algorithm, simulated annealing, to

the problem of neural network synaptic weight selection.

Back-Propagation Training.

The most widely used learning strategy for FFNNs is error back-propagation [10].

In back-propagation, the synaptic weights of the network are adjusted proportionally

to their contribution to the error in the output of the network, with respect to the

desired output. The process of determining how much an individual synaptic weight

contributed to the output error of the network is often called the credit assignment

problem; the back-propagation algorithm is one solution to the credit assignment

problem for FFNNs.

In the literature discussing the derivation of the back-propagation algorithm, a

standard mathematical notation describing the operation of FFNNs is used. In this

17

www.manaraa.com

notation, the input to the activation function of a neuron j is given by

vj(n) =
m∑
i=0

wji(n)yi(n), (7)

where wji is the synaptic weight of the connection from neuron i to neuron j, yi(n)

is the output signal from neuron i, and m is the total number of inputs to neuron j.

Therefore, the output of neuron j given the nth input pattern, yj(n), is given by

yi(n) = ϕj(vj(n)) = ϕj

(
m∑
i=0

wji(n)yi(n)

)
. (8)

The back-propagation algorithm begins begins by de�ning the error of an individ-

ual output neuron, j, which is given by

ej(n) = dj(n)− yj(n), (9)

where dj(n) is the desired output value for output neuron j and yj(n) is the actual

output from output neuron j, given the nth input pattern. This error quantity, which

is de�ned for each output layer neuron, is then combined to form and instantaneous

error energy term for the entire network, given by

E(n) =
1

2

∑
j∈C

e2
j(n) (10)

where C is the set of integer labels indicating the output neurons, and ej(n) is the

error of output neuron j given the nth input pattern. The error energy is therefore

simply the sum os squared errors, over all output neurons.

The objective of the back-propagation algorithm is to minimize E by modifying

each synaptic weight in the network according to its share of responsibility for E .

Thus, given an error value, E , the back-propagation algorithm constructs a correction

18

www.manaraa.com

factor, ∆wji(n), which is the quantity by which the synaptic weight wji must be

changed in order to minimize E(n) for the nth input pattern. Here, ∆wji(n) should

change the weight wji(n) in such a way as to reduce the error, which is equivalent

to descending the gradient of the error in the weight space. Observe that the partial

derivative is given by

∂E(n)

∂wji(n)
. (11)

The partial derivative given in Eq. (11) gives the sensitivity of E(n) with respect

to an individual synaptic weight wji(n). Thus, calculating the instantaneous value

of Eq. (11) yields the change in the weight wji(n) which most reduces E(n) for the

nth input pattern. A learning rate parameter, α, is introduced to control the rate of

descent. Combining these values yields the desired correction factor, ∆wji(n), often

called the delta rule, which is given by

∆wji = −α ∂E(n)

∂wji(n)
. (12)

The negation of the partial derivative in Eq. (12) is indicative of gradient descent.

In order to construct a functional form of Eq. (12), suitable of algorithmic imple-

mentation, further development is required. Applying the chain rule to Eq. (11), the

expression

∂E(n)

∂wji(n)
=
∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)

∂vj(n)

∂wji(n)
(13)

is constructed. A functional form of each partial derivative in Eq. (11) may be con-

structed from the mathematical framework used to describe FFNNs. Di�erentiating

19

www.manaraa.com

Eq. (10) with respect to ej(n) yields

∂E(n)

∂ej(n)
= ej(n). (14)

Di�erentiating Eq. (9) with respect to yj(n) yields

∂ej(n)

∂yj(n)
= −1. (15)

Di�erentiating Eq. (8) with respect to vj(n) yields

∂yj(n)

∂vj(n)
= ϕ′j(vj(n)). (16)

Di�erentiating Eq. (7) with respect to wij(n) yields

∂vj(n)

∂wji(n)
= yi(n). (17)

Substituting Eq. (14), Eq. (15), Eq. (16), and Eq. (17) into Eq. (13) yields

∆wji = αej(n)ϕ′j(vj(n))yi(n), (18)

which is often expressed as

∆wji = αδj(n)yi(n), (19)

where δj(n) = ej(n)ϕ′j(vj(n)); δ(n) is called the local gradient. Eq. (19) is the desired

functional form of the delta rule. Observe, however, that δ(n) depends on ej(n)

which in turn depends on dj(n), which is only de�ned for output neurons. Thus, the

back-propagation algorithm must compute the local gradient di�erently, depending

20

www.manaraa.com

on where the neuron for which the incident synaptic connections are being updated

resides in the network. For output layer neurons, the delta rule is stated in Eq. (19).

For hidden layer neurons the computation is somewhat more complex.

There is no explicit error signal for any neuron in the hidden layers, thus, one must

be constructed from those neurons that do have an error signal. Eq. (13) dictates

that the local gradient for a hidden layer neuron j is given by

δj(n) = −∂E(n)

∂yj(n)

∂yj(n)

∂vj(n)
(20)

which, in turn, yields

δj(n) = −∂E(n)

∂yj(n)
ϕ′j(vj(n))yi(n). (21)

In order to calculate the partial derivative ∂E(n)/∂yj(n), the error from an output

neuron, given in Eq. (10), must be used. Di�erentiating Eq. (10), where j in that

equation is relabeled to k to avoid confusion, yields

∂E(n)

∂yj(n)
=
∑
k

ek
∂ek(n)

∂yj(n)
=
∑
k

ek
∂ek(n)

∂vk(n)

∂vk(n)

∂yj(n)
. (22)

Additionally, observe that Eq. (9) becomes

ek(n) = dk(n)− yk(n) = dk(n)− ϕ′k(vk(n)). (23)

which yields

∂ek(n)

∂vk(n)
= −ϕ′k(vk(n)) (24)

by di�erentiation with respect to vk(n). Further, observe that by relabeling Eq. (7)

21

www.manaraa.com

in terms of k, an expression which gives the input to output neuron k from hidden

neuron j is obtained:

vk(n) =
m∑
j=0

wkj(n)yi(n). (25)

Di�erentiating Eq. (25) with respect to yj(n) yields

∂vk(n)

∂yi(n)
= wkj(n). (26)

Substituting Eq. (26) and Eq. (24) into Eq. (22) the desired partial derivative, ∂E(n)/∂yj(n),

is recovered and is found to be

∂E(n)

∂yj(n)
= −

∑
k

ek(n)ϕ′k(vk(n))wkj(n), (27)

which reduces to

∂E(n)

∂yj(n)
= −

∑
k

δk(n)wkj(n). (28)

Finally, substituting Eq. (28) into Eq. (21) yields

δj(n) = ϕ′j(vj(n))
∑
k

δk(n)wkj(n), (29)

which gives the local gradient of the error for hidden layer neuron j.

Thus, a function specifying the weight correction factors for synaptic weight in-

cident to neurons in the hidden and output layers is constructed. This delta rule

function is given by

∆wji = αδj(n)yi(n), (30)

22

www.manaraa.com

where

δj(n) =


ej(n)ϕ′j(vj(n)) j ∈ C

ϕ′j(vj(n))
∑

k δk(n)wkj(n) j /∈ C
, (31)

where C is the set of output neurons.

The back-propagation algorithm updates the weights of the FFNN by propagat-

ing an input pattern though the network, then propagating the resultant error signal

backward through the network, applying Eq. (30) and Eq. (31) to each synaptic

weight. The back-propagation algorithm is e�ective, but also has limitations. The

algorithm descends the gradient of the error surface in order to minimize the error.

If the error surface contains local minima, the back-propagation algorithm can be-

come stuck in these minima, because there is no local gradient to follow, thereby

prematurely resulting in a neural network which produces a greater than minimal

error.

Simulated Annealing Training.

The �rst application of simulated annealing (SA) to the training of neural net-

works was accomplished by Engle in [12], with limited success. Engle's work involved

discrete-weight neural networks, and was limited in applicability. Since, several pub-

lications [11, 36, 37] have described the application of SA to neural network weight

selection. In [11], for example, multivariate simulated annealing is used to reduce the

generalization error of a neural network trained using other gradient descent methods.

2.2 Related Works in Simulated Annealing

Simulated annealing is a stochastic optimization algorithm that can be used to

�nd the global minimum of a cost function mapped from the con�gurations of a com-

23

www.manaraa.com

binatorial optimization problem. The concept of simulated annealing was introduced

by Kirkpatrick et al. [38] as an application of the methods of statistical mechanics

to the problem of discrete combinatorial optimization. Speci�cally, simulated anneal-

ing is an extension of the Metropolis-Hastings [39] algorithm, which can be used to

estimate the ground energy state of a many-body systems at thermal equilibrium.

Kirkpatrick, et al. applied the Metropolis-Hastings algorithm sequentially, with de-

creasing temperature values in order to approximate a solid slowly cooling to low

temperatures. Later work by Go�e [40], Corana, et al. [41], and Lecchini-Visintini et

al. [42] extended SA to the continuous domain.

In the most general terms, SA is a local search algorithm through the problems

solution space, S, which is the set of all possible solutions, s, of the problem, where

s ∈ S. The search is conducted by generating new solutions to the problem by apply-

ing a neighborhood function, N , to the current solution; the neighborhood function

speci�es the way in which a solution is transformed to yield a new solution, or neigh-

bor solution, and is generally problem dependent. To apply SA to an optimization

problem it is necessary that each possible solution of the problem be characterized by

a cost function, C, where C is a mapping C : S → R. Because C is a function on S, it

is said that the cost function forms a cost surface in the solution space. During each

iteration of the algorithm, a new solution s′ is generated using N (s), and the cost of

that solution, C(s′), is determined. The change in cost associated with moving from

the current solution to the neighbor solution is given by

∆C = C(s′)− C(s).

The quantity ∆C is then used in conjunction with an arti�cial temperature param-

eter to determine if the newly-generated neighbor solution is to become the current

solution. The arti�cial temperature parameter is speci�ed by the temperature sched-

24

www.manaraa.com

ule, T (t), where t is the number of simulation iterations completed. Though t often

denotes a continuous value, in this case t is a discrete, nonnegative integer value. The

temperature controls the probability of the system moving to a higher cost solution,

thereby enabling the algorithm to escape local minima on the cost surface. In the

parlance of SA [38], a system at its maximum temperature is said to be melted. In the

melted state, most neighbor solutions are accepted by the algorithm. Analogously,

a system that has a temperature of zero, which indicates that the algorithm cannot

move to any higher-error state, is said to be frozen. Note that a frozen system may

still be perturbed into a lower-energy state. The notions of freezing and melting en-

ter the SA algorithm in the form of the acceptance criterion, which determines if a

newly-generated solution is to become the current solution. The most commonly used

acceptance criterion is the Metropolis criterion [39]. The probability of transitioning

to a state, P , given the ∆C associated with that transition is given by:

P =


1, ∆C ≤ 0,

e−
∆C
T (t) , ∆C > 0.

(32)

The probability of moving to a solution that is higher in cost than the current

solution is derived from the statistical mechanical probability of traversing a poten-

tial energy barrier by thermal �uctuations. When considering only the in�uence of

classical thermal �uctuations in particle energy levels, the probability of a particle

traversing a barrier of height ∆V at a temperature T is on the order of

Pt = e−
∆V
T . (33)

The SA algorithm is presented in Algorithm 1.

25

www.manaraa.com

Algorithm 1 This algorithm describes a metaheuristic method for identifying the
global minimum of a cost surface de�ned by C. Inputs: s0, an initial solution from
which subsequent solutions will be produced. C, a cost function de�ned on the so-
lution space. T , a temperature schedule function. ε, a minimum temperature value
which, once attained, causes the algorithm to halt; values of ε less than or equal to
0.0 may prevent the algorithm from halting, and are therefore invalid inputs. N ,
a neighborhood function which produces a neighboring solution from a provided so-
lution. Outputs: sopt, a solution which corresponds to the minimum cost function
value, given the input parameters.
1: procedure SimulatedAnnealing(s0, C, ε, N , T)
2: s← s0 . Initialize a solution.
3: t← 1 . Initialize the epochs counter.
4: while T (t) > ε do . Repeat until the temperature is su�ciently small.
5: s′ ←N (s) . Generate a neighbor solution.
6: ∆C ← (C(s′)− C(s)) . Compute the cost change.
7: if (∆C ≤ 0) ∨ (exp(∆C/T (t)) > U (0, 1)) then . Apply Metropolis

criterion.
8: s← s′ . Accept the new state.
9: end if
10: t← t+ 1 . Increment the epoch count.
11: end while
12: sopt ← s . Declare the optimal solution.
13: return (sopt) . Return the optimal solution.
14: end procedure

26

www.manaraa.com

Variants of Simulated Annealing.

Since the publication of the original description of SA, several variations of the

algorithm, many of which improve its e�ciency considerably, have been described. In

[43], Szu and Hartley introduced the method of fast simulated annealing (FSA), which

incorporates occasional, long jumps through the con�guration space, These jumps are

accomplished by using heavy-tailed distributions, such as the Cauchy distribution, for

the visiting distribution used in the neighborhood function. This provision increases

the likelihood of escaping local minima, and reduces the total computational e�ort

required to reach a global minimum. This modi�cation yields a signi�cant decrease

in the amount of computation e�ort required to guarantee that a global minimum

is found. Speci�cally, FSA increases the acceptable temperature decay rate relative

to the original speci�cation of SA, classical simulated annealing (CSA). The CSA

temperature schedule is given by

TCSA(t) = TCSA(1)
1

ln(t)
, (34)

while the FSA temperature schedule is given by

TFSA(t) = TFSA(1)
1

t
. (35)

This considerable increase in the rate at which the temperature is able to decrease,

while still �nding a global minimum, signi�cantly reduces the computational e�ort

required to �nd a global minimum. A detailed proof of the su�ciency of this tem-

perature schedule can be found in [44, 43], and an intuitive explanation based on the

con�guration space traversal properties of the algorithm can be found in Section 3.1.

Later work by Tsallis and Stariolo [45] generalized both CSA and FSA into a

single framework: generalized simulated annealing (GSA). GSA is fundamentally a

27

www.manaraa.com

modi�cation and parameterization of the visiting distribution used to produce new

states. This distribution further increases the decay of temperature over training

time, yielding a new temperature schedule given by

TGSA(t) = TGSA(1)
2qT−1 − 1

(1 + t)qT−1 − 1
, (36)

where qT is a tunable parameter which in�uences the rate both the rate of temperature

decay and the shape of the visiting distribution. The temperature schedule de�ned in

Eq. (36) is shown to be su�cient to enable the location of a global minimum in [46].

GSA is widely-considered to be the state of the art in SA, and has been used with

considerable success to solve di�cult problems in many �elds [47, 48, 49]. Despite

this widespread use, a review of the available literature does not reveal application

of GSA to the problem of neural network synaptic weight selection; GSA is used to

that end in this thesis.

Reannealing.

In [44], Ingber introduced the concept of reannealing; a mechanism that allows

for the arti�cial temperature parameter to occasionally increase. The increase, or

rescaling, of the temperature parameter enables the SA algorithm to move to higher

cost solutions, e�ectively restarting the annealing process, but from a con�guration

space location that is already known to be a local minima. This mechanism allows

the SA algorithm to escape from local minima, and thus decreases the simulation

time required to achieve convergence to a global minima.

2.3 Relevant Concepts in Quantum Mechanics

Quantum mechanics is the branch of physics concerned with the physical laws of

nature at very small scales. Many aspects of physical reality are observable only at

28

www.manaraa.com

these scales. Several variants of simulated annealing described in this document are

either inspired by, or are simple models of, quantum mechanical processes. These

concepts are very brie�y reviewed in this section.

One of the quantum phenomena for which there is no classical analog is potential

barrier penetration, also known as quantum tunneling. This phenomenon arises from

the probabilistic and wavelike behavior of particles in quantum physics. Tunneling

plays a signi�cant role in the behavior of bound and scattering quantum mechanical

systems.

A particle with energy E incident upon a potential energy barrier of height ∆V >

E has a non-zero probability of being found in, or past, the barrier. Classically, this

behavior is forbidden. The probability of tunneling, Pt, through a step barrier of

height ∆V is described by:

Pt = e−
w
√

∆V
Γ (37)

where Γ is the tunneling �eld strength [50]. Fig. 2 depicts a one-dimensional example

of the quantum tunneling of the probability distribution function of the location of a

particle indecent upon a potential energy barrier.

2.4 Summary

In this chapter, a review of the history of neural networks is presented, as well as

an overview of the essential features of neural networks. The most common training

algorithm for FFNNs is derived and one limitation of this algorithm is identi�ed.

Relevant literature from other �elds is summarized and related to the problem of

neural network weight selection. In this thesis, the concepts presented in this chapter

will be built upon to construct a neural network training algorithm which is able to

overcome some of the limitations of back-propagation.

29

www.manaraa.com

Figure 2. (Top) The probability density function of a generic quantum system in the
presence of a potential energy step barrier. There is an exponential decrease in proba-
bility through the barrier, and a uniform probability beyond the barrier. (Bottom) A
simple step potential in one dimension.

30

www.manaraa.com

III. Methodology

The application of simulated annealing (SA) to feed-forward neural network (FFNN)

weight selection requires the speci�cation of several formalisms and representations

linking the two concepts. This chapter presents the representations, of both simulated

annealing and FFNNs, adopted in this thesis. These representations are combined

into a set of formalisms which describe the application of SA to FFNN weight selec-

tion. Initial exploration of the e�cacy of these formalisms is conducted.

3.1 Simulated Annealing

Several variations of the SA algorithm are developed and implemented. Each is

applied to the problem of selecting synaptic weights in a FFNN in order to maximize

the performance of the network; the performance of the network is characterized

by its ability to correctly map an input vector to a desired output vector. This

section contains an abstract discussion of the SA formulations which are applied to the

the weight selection problem; later sections will expound the implementation details

speci�c to the FFNN application of the these SA formulations. For all SA formulations

examined in this thesis, the Metropolis acceptance criterion is used. The temperature

schedule is determined by the convergence properties of the constructed algorithm.

Examining Alg. 1 reveals that the preceding speci�cations leave only one component

unspeci�ed: the neighborhood function, which determines how new trial solutions

are generated from the current solution. In the following sections, the neighborhood

function is decomposed into two decoupled components, the visiting distribution and

anisotropicity policy, and several possible realizations of each are discussed.

The SA algorithm requires the speci�cation of a neighborhood function, N , to

produce new solutions from a given solution. The neighborhood function performs

31

www.manaraa.com

the exploration of the solution space, as it speci�es new solutions which are either

accepted or rejected according to the acceptance criteria. Thus, N determines how

the algorithm traverses the cost surface of the problem. A traversal action, or move,

on a surface, may be decomposed into two components: the distance of the move and

the direction of the move. These components may be speci�ed independently of one

another. The distance of the move on the cost surface has been examined in previous

work [44, 43, 45], and is often speci�ed using a visiting distribution, which is de�ned

as a probability distribution of transition to a solution over the solution space of the

problem. The visiting distribution speci�es the magnitude and the direction of the

move.

In previous work [45], the move distance is applied isotropically in all possible

dimensions of travel. In physical science, isotropicity is the phenomenological property

of being uniformly applicable in all dimensions. In the context of neighborhood

functions, this means that the probability distribution over the solution space is

symmetric; that is, that the probability distribution in each dimension is the same.

In the following subsections, a method is developed for specifying an anisotropic

visiting distribution.

Visiting Distributions.

The neighborhood function visiting distribution is probability a density function

over all possible solution states, which speci�es the probability of transitioning from

the current state of the system to another state. Once a visiting distribution is spec-

i�ed, samples can be drawn from the distribution using inverse transform sampling.

These samples may be either drawn from an n-dimensional distribution, where n is

the number of free parameters of the problem, or n samples can be drawn and applied

to each of the free parameters independently. In this thesis, all visiting distributions

32

www.manaraa.com

are implemented using the latter method. In the following sections, several visiting

distributions are presented.

Gaussian Visiting Distributions.

A Gaussian visiting distribution is commonly used in SA. Because it is a light-

tailed distribution, and therefore indicates very low probability for all values far from

the mean, a Gaussian visiting distribution results in a search that is highly local

about the mean, or current solution. An SA algorithm using a Gaussian visiting

distribution is often called classical simulated annealing (CSA) [45], both because it

is the formulation of SA that was described �rst, and because the dynamics of the

algorithm are isomorphic with those of classical thermodynamics. In this work, a

standard normal distribution is used, and is given by

gG(x) =
e−

1
2
x2

√
2π

. (38)

Cauchy Visiting Distributions.

Local search must occur in order to enable gradient descent, but it introduces

a limitation. If the arti�cial temperature that controls the probability of moving

uphill on the cost surface is lowered too quickly, the algorithm can get caught in a

local rather than global minima. This is also known as the freezing problem. One

way to alleviate this limitation is to construct a neighborhood function that enables

the system to escape local minima by means other than hill-climbing. In quantum

mechanics, a system that is trapped in a local minimum on a potential energy surface

may escape that minima by tunneling through the potential energy surface to a

lower energy state. It is possible to construct several visiting distributions which act

analogously to quantum tunneling. This can be done by using a visiting distribution

33

www.manaraa.com

that has a non-negligible probability of generating large traversal distances. If the

traversal distances generated are su�ciently large, it is possible that the arrived-at

solution will be across the cost surface barrier surrounding the local minimum, thus

allowing the algorithm to escape the minimum. The term quantum-inspired visiting

distribution is used in this thesis to describe any distribution possessing this property.

(Left) (Right)

Figure 3. (Left) A potential energy barrier on a one-dimensional potential energy
surface. (Right) The tunneling probability relative to the probability of traversal due
to thermal �uctuation for a step barrier plotted as a function of the height and width
of the barrier.

The signi�cant performance gains exhibited by the fast simulated annealing (FSA)

algorithm are the result of using a quantum-inspired visiting distribution. In [43],

which introduces the FSA algorithm, a Cauchy distribution is used to generate new

solutions. Unlike the Gaussian distribution, the Cauchy distribution is heavy-tailed,

meaning that it will occasionally produce values which are relatively far from the

mean. This property of the distribution has the useful consequence of increasing the

probability of escaping a local minima by allowing the algorithm to tunnel through

the cost-surface barriers that surround it. This in turn allows for faster convergence

relative to CSA. To understand the origin of this advantage, it is instructive to con-

34

www.manaraa.com

trast Eq. (33) and Eq. (37). Both describe the same value, but the importance of the

width and height of the traversed barrier in the two equations is considerably di�erent.

For systems in which quantum tunneling is possible, the probability of penetrating a

barrier of height ∆V is increased by a factor of approximately e∆V , for large values

of ∆V . This relationship is depicted graphically in Fig. 3 which shows the probabil-

ity of barrier traversal for a system which allows quantum �uctuations, divided by

the same probability for a system which only considers thermal �uctuations. Fig. 3

(Right) illustrates the fact that physical models which considers quantum e�ects are

much more likely to predict penetration of tall, thin energy barriers than those which

only include classical thermal e�ects.

The general probability density function for the Cauchy distribution is given by

gC (x,ΘC = {x0, γ}) =
1

πγ

γ2

(x− x0)2 + γ2

where x0 is the mean and γ is the shape parameter. In this work, x0 = 0 and γ = 1,

yielding the speci�c Cauchy distribution given by

gC(x|Θ = {0, 1}) =
1

πx2 + π
. (39)

Generalized Simulated Annealing Visiting Distribution.

The most sophisticated form of SA is generalized simulated annealing (GSA), de-

scribed by Tsallis and Stariolo in [45]. As the name implies, this SA implementation

is a generalization of other forms of SA, speci�cally CSA and FSA, which can be

recovered under certain conditions in the GSA formulation. As with FSA, GSA is es-

sentially SA with a modi�ed visiting distribution. The visiting distribution proposed

in [45] is given, for a single dimension, by

35

www.manaraa.com

gGSA(x|ΘGSA) =

[(
qV − 1

π

)(D/2)
]Γ

(
1

qV −1
+ D−1

2

)
Γ
(

1
qV −1

− 1
2

)

 T

− D
3−qV

qV(
1 + (qV −1)(x2)(

T
2(3−qV)
qV

)
) 1

qV −1
+D−1

2

 ,
(40)

where

ΘGSA = {TqV , qV , D}, (41)

in which qV is a free parameter selected by the experimenter, and TqV is a stochastic

process control parameter1 which may, or may not, change during the execution of the

SA algorithm, andD is the number of dimensions of the search problem to which GSA

is being applied. The function Γ(·) is the Gamma function, which is the functional

form of a smooth curve that connects and interpolates between the points (x, y),

where x and y are related by the function y = (x1)! at the positive integer values for

x. Unlike the Cauchy and Gaussian visiting distributions used in CSA and FSA, the

GSA visiting distribution has several free parameters that alter the shape and scale

of the distribution. The GSA visiting distribution should therefore be conceptualized

as a family of related distributions, from which one may be selected to construct a

GSA neighborhood function.

Fig. 4 contains a comparison between the distributions produced by several vari-

ations of qV and TqV , where D = 1. Values of qV near 1 yield very light-tailed

distributions, similar to Gaussian distributions. As qV → 1, gGSA(x) recovers gG(x).

Similarly, as qV → 2, gGSA(x) exactly recovers the Cauchy distribution, gC(x). Values

1This temperature parameter is completely independent from the annealing temperature param-
eter of SA. The two parameters can vary independently of one another, but will both be annealed
over the course of the algorithm.

36

www.manaraa.com

of qV greater than 2 do not have a independent analog distribution and have been

experimentally shown [46, 48, 47, 49, 51] to yield more e�cient SA algorithms, when

used as a visiting distribution.

Figure 4. This �gure comprises four plots, each of which displays a GSA distribution
at various values of TqV , in order to illustrate the behavior of the GSA distribution for
several values of qV . This �gure shows the GSA near the mean, which illustrates the
e�ect of qv and TqV on the near-mean domain values, while neglecting the e�ects on the
tails of the distribution.

Fig. 5 displays the same data as Fig. 4, but shows the data over a di�erent scale

in order to highlight the impact of the choice of distribution parameters on the tails

37

www.manaraa.com

of the produced distribution. Several trends are seen through the examination of

Fig. 4 and Fig. 5. Fig. 4 displays the behavior the GSA distribution near the origin,

where, for most combinations of qV and TqV , the majority of the probability mass is

concentrated. Fig. 5 details the behavior of the GSA distribution at domain values far

from the origin, or, in the tails of the distribution. As is shown in Fig. 4, qV primarily

in�uences the shape of the distribution. Values of qV near 1 produce distributions with

small variance, while larger values of qV result in distributions with large variance.

This behavior is particularly clear in Fig. 5, which shows, in detail, the tails of the

distribution. Examining Fig. 5, it is clear that increasing qV corresponds to an increase

in the variance of the resulting distribution. A larger qV value also corresponds to

less tail-behavior sensitivity to the temperature parameter, TqV . TqV also in�uences

the distribution shape. As the value of TqV is increased, the distribution becomes

more uniform over the domain. This has important consequences for the application

of GSA distribution to stochastic search problems such as SA.

As discussed in [51, 46] the distributions produced by Eq. (40) have several useful

properties when used in stochastic search procedures. The longer tails of the GSA

distribution when qV > 1 enable more homogeneous visitation of the entire solu-

tion space of the problem, relative to a Cauchy distribution. Furthermore, the fact

that qV is selected by the experimenter creates an opportunity for problem-speci�c

construction of the visiting distribution used in the SA implementation. The newly-

introduced temperature parameter, TqV , may also be exploited to escape cost surface

local minima. Regardless of the value of qV , large values of TqV produce distributions

which have high variance, and are therefore able to produce problem con�gurations

which very di�erent from the current state.

While the GSA distribution produces a neighborhood function with several ad-

vantageous search characteristics, it does have a signi�cant drawback. The integral

38

www.manaraa.com

Figure 5. This �gure comprises four plots, each of which displays a GSA distribution
at various values of TqV , in order to illustrate the behavior of the GSA distribution for
several values of qV . This �gure shows the GSA distribution for domain values far from
the mean, which illustrates the e�ect of qv and TqV on the tails of the distribution.

of Eq. (40) has no closed-form analytic solution. The inde�nite integral can be con-

structed, but this operation yields the hypergeometric function, which can be com-

puted as a power series. However, as shown in [46], this approach is computationally

expensive. Thus, Eq. (40) is unsuitable for transform-based random sampling. In

order to overcome this limitation, a distribution sample caching method is used.

This method works by numerically approximating the integral, which yields a series

39

www.manaraa.com

of domain-range value pairs which constitutes an approximation to the cumulative

distribution function. To sample the distribution, a number is selected with uni-

form probability on the interval [0, 1]. The numeric integration value which has the

minimum-magnitude di�erence with the randomly selected value is identi�ed, and

the displacement value to which it corresponds is returned. This procedure is the

numerical equivalent of inverse transform sampling.

An arbitrarily-large set of samples can be constructed using this method. If the

sample set is su�ciently large, a random choice from the sample set is approximately

equivalent to sampling the original distribution. A large set of samples for each

combination of qV , Tqv , and D can be stored for later access, thus enabling fast

numerically-approximate sampling of Eq. (40). A thorough search of the publicly-

available resources indicates that there are few systems available for the generation of

GSA random variables, despite the popularity and utility of GSA. This thesis develops

a system which quickly produces samples from the GSA distribution.

Uniform Visiting Distributions.

As illustrated in Fig. 2 the probability of observing a particle beyond a classically-

impenetrable potential barrier is uniform beyond the barrier2. An analogous visiting

distribution can be constructed, which models all con�guration space movement dis-

tances as equally likely. The utility of this visiting distribution is that it makes the

entire cost surface accessible each time the neighborhood function is applied to the

current state; this property is useful, but prevents any local gradient descent. As such,

the uniform visiting distribution serves an upper bound for the trade-space between

global and local search policies.
2This observation only holds for potential energy surfaces containing a single barrier. The anal-

ogous cost surface over neural network weight space is likely to have many barriers corresponding
to the superimposed convex spaces around competing conventions of weight con�gurations which
encode similar functions. Thus the analogy used here is only an approximation of the behavior of
quantum systems.

40

www.manaraa.com

Anisotropicity Policies.

In previous work, the visiting distribution is applied isotropically over the free

parameters, or dimensions, of the solution space [45, 46]. In the context of SA,

isotropic application of the visiting distribution means the next state for each free

parameter is a sample from a common, identical distribution. In the SA related

works reviewed in this thesis, the visiting distribution is applied isotropically, either

explicitly or implicitly. Because all possible realizations of anisotropicity are problem-

speci�c, a detailed discussion of the anisotropicity policies explored in this thesis is

deferred to Section 3.3.

3.2 Feed-Forward Neural Network Representation

(Left) (Right)

Figure 6. (Left) An arbitrary feed-forward ANN. (Right) The weight matrix represen-
tation of the feed-forward ANN in (Left).

The problem of feed-forward neural network (FFNN) synaptic weight selection

must be formulated as a combinatorial optimization problem before any formulation

of SA can be applied to it. Each synaptic weight in a FFNN may be encoded as

a real-valued element in a 3-dimensional relation matrix, denoted as ωijk. In this

encoding scheme, for a given layer, k, of the matrix the row and column indexes

41

www.manaraa.com

indicate the presynaptic and post-synaptic neurons, respectively. The absence of a

synaptic connection is indicated by a value of 0 in the matrix element corresponding

to that synaptic connection. A nonexistent synapse can be caused by the absence

of either the presynaptic or post-synaptic neuron, or by the absence of a connection

between the neurons. This weight encoding scheme is depicted graphically in Fig. 6.

The weight matrix, ω, therefore encodes a con�guration in the problems solution

space, and can be visualized as:

The total solution space, S, may then be de�ned as the set of all possible con�gu-

rations of ω for a given neural network. In the terminology common to the physics

literature, ω is the the phase space of the FFNN system. In the synaptic weight selec-

tion problem domain, it is more evocative to call S the weight space of the network,

so this convention is adopted throughout this thesis.

A network representation has now been speci�ed, now a formal description of the

data on which the network is to operate needs constructed. Feed forward neural

networks associate a set of numeric input data elements with a set of numeric output

data elements. Thus the formalism which used to represent the data should capture

this directional association. In this thesis, a set of ordered pairs is used to represent

that association. Formally, a set X is de�ned such that each element x ∈ X is an

ordered pair of the form

42

www.manaraa.com

x = (χ, λ) = {χ, {χ, λ}}

where χ and λ are independent sets of real numbers. In this formalism χ is the

input data, and λ is the desired output data. X is therefore a speci�c set of ordered

pairs mapping input data to output data. Extending this notion, the notation X is

introduced to represent the in�nite set of all possible realizations of X, which is all

possible data sets which could be presented to an ANN.

In the interest of concise notation, a function ϕL(ω, χ), which represents set of nu-

meric data produced by propagating the set χ through a FFNN with weights speci�ed

by ω, is introduced. The de�nition, origin, and formal construction of this function

is provided in Appendix A. Unless otherwise speci�ed, all neural networks discussed

in this thesis use a hyperbolic tangent activation function.

Given the weight space formalism S, and X for the set of all possible data sets,

we de�ne a cost function C as a mapping

C : (S,X)→ R.

For every data setX, each possible synaptic weight con�guration, ω, then corresponds

to some cost value C(ω,X). Thus, C(ω,X) de�nes a cost surface embedded in the

weight space. The objective is now to �nd a synaptic weight con�guration, ωopt, such

that

C(ωopt, X) ≤ C (ω,X) ,∀ (ω ∈ S) .

With this framework in place, SA can be applied to transition from a randomly-

selected initial state, ω0, to ωopt, where ω0
i.i.d.∼ U [−0.1, 0.1].

43

www.manaraa.com

3.3 Applying Simulated Annealing to Feed-Forward Neural NetworkWeight

Modi�cation

The formulations of SA described in Section 3.1 may be applied to any properly

formulated combinatorial optimization problem. The representation formalism for

the weight parameters of a feed forward neural network presented in Section 3.2

serve as the parameter space in a combinatorial optimization function, and thus

enables the application of SA to the problem of neural network weight selection.

With a more concrete problem de�nition in place, it is now possible to precisely

specify several SA neighborhood functions for the problem of neural network weight

selection. In the following sections, several complete de�nitions of neighborhood

functions are presented for the application of SA to FFNNs. The term synaptic

annealing is introduced to represent any arti�cial neural network training algorithm

which modi�es synaptic weights using SA.

Synaptic Annealing Neighborhood Functions.

A generic synaptic annealing neighborhood function which, given a weight state

ω, returns another weight state, ω′, which is some modi�cation of the original weight

state. The synaptic annealing neighborhood function is generically de�ned as

N (ω) = ω + α(G + A) (42)

where α is the learn rate parameter, G is the neighborhood sample matrix, and

A is the anisotropicity matrix. Each element in the neighborhood sample matrix,

G, is a sample generated using the random variable generation function G−1(U),

where G−1 is the sample generation function for a visiting distribution g(x), and

U is a uniform random variable over the range [0, 1]. Generally, G−1 is the inverse

44

www.manaraa.com

transform of the cumulative distribution function of the visiting distribution, or a

numeric approximation. Both G and A have dimensionality equal to that of ω.

Additionally, the following constraint is imposed on the matrices:

∀ ωi,j,k ∈ ω, [ωi,j,k = 0]⇒ [Ai,j,k = 0] ∧ [Gi,j,k = 0]. (43)

The constraint speci�ed in Eq. (43) ensures that synaptic connections that are not

speci�ed to exist, and are therefore set to exactly 0, are not inadvertently created by

the neighborhood function.3 The term α(G + A) in Eq. (42) is added to the current

weight matrix to produce a new weight matrix, and can therefore be thought of as a

perturbation of the current state. In the following sections several realizations of this

general form, each corresponding to a di�erent form of SA, are presented.

Gaussian (CSA) Synaptic Annealing Neighborhood.

The original description of SA employed a Gaussian visiting distribution [38]. The

Gaussian neighborhood function for FFNNs, NG, is de�ned as

NG(ω) = ω + α(GG + A) (44)

where α is the learning rate, GG a matrix of samples drawn from the standard normal

distribution such that

GG
iid∼ N(0, 1), (45)

3Strictly speaking, it is possible for a weight to be set to 0 in the normal operation of the SA
algorithm. If this were to occur, the constraint speci�ed in Eq. (43) would prevent that weight from
ever being modi�ed again. This scenario was never observed in the course of this work, and is very
unlikely, but is not explicitly forbidden by the implementation of synaptic annealing proposed in
this work.

45

www.manaraa.com

and A is an anisotropicity matrix. The neighborhood function given in Eq. (44) is

an application of the canonical form of simulated annealing to the problem of select-

ing a weight con�guration for a FFNN. The term classical is used here because the

underlying simulated annealing model can be described entirely in terms of classical

statistical mechanics. To interpret this in terms of the analogy present in Sec. 3.1,

the probability of the Gaussian visiting distribution used in CSA generating a weight

space distance large enough to transition the system across a large energy barrier is ef-

fectively 0. In the following sections, models which approximate quantum mechanical

phenomena are constructed.

Cauchy (FSA) Synaptic Annealing Neighborhood.

The Cauchy neighborhood function used for synaptic annealing, NC , is given by

NC(ω) = ω + α(GC + A) (46)

where α is the learning rate, GC a matrix of samples drawn from the Cauchy distri-

bution such that

GC
iid∼ Cauchy(Θ = {0, 1}), (47)

andA is an anisotropicity matrix. The perturbation of weight con�guration produced

by Eq. (46) will be su�ciently-large to allow the system to occasionally traverse cost

surface barriers, thereby escaping entrapment in local minima.

46

www.manaraa.com

Tsallis (GSA) Synaptic Annealing Neighborhood.

The GSA neighborhood function used for synaptic annealing NT is de�ned as

NGSA(ω) = ω + α(GGSA + A) (48)

where α is the learning rate, GGSA a matrix of samples drawn from the GSA distri-

bution such that

GGSA
iid∼ GSA(Θ = {qV , TqV , D}), (49)

and A is an anisotropicity matrix. Relative to the weight space traversal jumps made

by an annealing system which has a Cauchy neighborhood function, a system that

uses the GSA neighborhood function will result in longer jumps that occur more

frequently, thereby ensuring a more homogeneous search of the weight space.

Uniform Synaptic Annealing Neighborhood.

Finally, the uniform neighborhood function used for synaptic annealing (NU),

de�ned as

NU(ω) = ω + α(GU + A) (50)

where α is the learning rate, GU a matrix of samples drawn from the uniform distri-

bution such that

GU
iid∼ U(−0.5, 0.5), (51)

and A is an anisotropicity matrix.

47

www.manaraa.com

Feed-Forward Neural Network Anisotropicity Policies.

In the course of developing the synaptic weight selection system presented in this

thesis, it was observed that it is sometimes advantageous to perturb di�erent synap-

tic weights using di�erent distributions during training. Since each synaptic weight

represents a free parameter in the speci�cation of a solution, the term anisotropicity,

meaning the application of some e�ect di�erently on a di�erent free parameter, is

adopted. There are several possible realization of anisotropicity for the neural net-

work weight selection problem, two of which are considered in this work. In this

thesis, anisotropicity is speci�ed as a modi�cation of the perturbation.

Isotropic (Null) Anisotropicity.

For completeness, a default anisotropicity is speci�ed. The isotropic, or null,

anisotropicity perturbation modi�cation is simply a 0 matrix of the same dimension-

ality as the perturbation matrix. This matrix, when added to the perturbation matrix

produces no change, thereby leaving the originally-isotropic application of the visiting

distribution isotropic.

Weight-Based Anisotropicity.

When evaluating the traversal characteristics of the synaptic annealing algorithms

constructed in the this thesis, it is observed that the sum of squared weight values

grew considerably during training. Previous work in [11] has show that large weight

magnitudes result in networks with high bias, and correspondingly high generalization

error. It is intuitively clear that, when using a sigmoidal activation function, a very

high-magnitude weight value e�ectively converts the a�erent neuron, relative to that

synapse, into a bias. Unless an equally large-magnitude weight of the opposite sign is

introduced, or the weight value �uctuates to a smaller value, the a�erent neuron will

48

www.manaraa.com

remain a bias. One of these contingencies may occur, but it is unlikely that such an

event would reduce the total training error of the network, and is therefore likely to

be rejected. In [11], Lee, et al. propose a method called multiobjective hybrid greedy

simulated annealing (MOHGSA), which uses SA to minimize both the cost function

and the sum of squared weights. By doing so, Lee, et al. were able to reduce the

the generalization error of a neural network trained by SA. The MOHGSA approach

works by exerting a selection pressure that lowers the likelihood of the SA algorithm

accepting moves that reduce the cost function if the move also increases the sum of

squared weights. An analogous procedure, which is a di�erent means to the same

end, is accomplished using anisotropicity in the visiting distribution, with respect

to the magnitude of the weight. This anisotropicity policy is called weight-based

anisotropicity, or weight anisotropicity. The weight anisotropicity matrix is given by

Ai,j,k = −(|ωi,j,k| > ta)
ωi,j,k
sa

, ∀ ωi,j,k ∈ ω, (52)

where (|ωi,j,k| > 1) is 1 if true and 0 if false, ta is a threshold parameter where tA ≥ 0,

and sa is a shift parameter where sa ≥ 1. The threshold parameter ta determines

the weight magnitude at which the anisotropic e�ects occur. If |ωi,j,k| < ta, then

Ai,j,k = 0. If the threshold is exceeded, then a non-zero value is subtracted from

the perturbation matrix element. Note that this subtraction corresponds to shifting

the mean of the visiting distribution, which is by default the current weight value,

thereby creating a new e�ective visiting distribution that is di�erent for each weight

in the network, and hence is anisotropic. The value subtracted from the mean is

given by ωi,j,k/sa, which is positive when ωi,j,k is positive, and negative when ωi,j,k

is negative. Thus, whenever the threshold weight value is exceeded, the mean of the

e�ective visiting distribution is brought closer to zero. The amount by which the

mean is brought closer to 0 is determined by sa. For example, if sa = 2, then the

49

www.manaraa.com

mean of the e�ective visiting distribution will be brought halfway back to 0. In the

limit as sa → ∞, the anisotropicity has no e�ect, whereas in the sa → 1 limit, the

anisotropicity yield an e�ective visiting distribution with mean 0. This has the e�ect

of allowing unconstrained exploration of the weight space inside the bounds of the

threshold, while reducing the probability of extended weight space traversal outside of

the bounds of ta. The weight anisotropicity thereby prevents unconstrained traversal

into large weight values, which in turn reduces the number of bias-like neurons created.

This reduction in bias-like neurons should prevent divergence between the training

and validation errors.

3.4 Cost Functions

All variations of synaptic annealing require the speci�cation of a heuristic cost

function, which conforms to the speci�cation given in Section 3.2. In this thesis, the

synaptic annealing algorithm is applied to two broad problem classes: regression and

classi�cation. To apply synaptic annealing to both of these problem classes, two cost

functions are constructed.

Regression Error Cost Function.

The cost function chosen to serve as a heuristic of regression error

Cr(ω,X) =
∑

(χ,λ)∈X

[λ− ϕ(ω, χ)]◦2 (53)

where ω is a weight matrix, ϕ is the propagation function, and X is the set of ordered

pairs mapping a set of input data χ to a set of output values λ, in which χ is the

�rst entry and λ is the second entry. This cost function yields the squared error (SE)

between the desired output set λ and the output of the forward propagation of the

input data, ϕ(ω, χ).

50

www.manaraa.com

Classi�cation Error Cost Function.

The classi�cation cost function, Cc, yields the number of incorrectly classi�ed

observations in a given data set, which is

Cc(ω,X) =
∑

(χ,λ)∈X

(λ 6= δ(ϕ(ω, χ))) . (54)

where ω is a weight matrix, ϕ is the propagation function, and X is the set of ordered

pairs mapping a set of input data χ to a set of output values λ, in which χ is the �rst

entry and λ is the second entry, and δ is a function which returns which maps any

vector a to another vector b where

∀bi ∈ b, bi =


1, ai = max(a),

0, ai 6= max(a).

This function is used to evaluate the performance of a network con�guration, for a

given set of data, when that data consists of categorical, or labeled, data. Though

the classi�cation cost function will always be used to report the performance of a

network con�guration when applied to classi�cation data, it may or may not be

used as the cost function which informs the synaptic annealing algorithm. Often,

it is advantageous to train a neural network using the regression error function [10]

presented in Section 3.4, and then report the performance of that network using the

classi�cation error.

3.5 Synaptic Annealing Algorithm Speci�cation

In the preceding sections all of the required components for a complete speci�ca-

tion of the synaptic annealing algorithm have been de�ned. With these de�nitions in

place, the algorithmic description of the synaptic annealing algorithm is now speci�ed,

51

www.manaraa.com

and presented in Algorithm 2.

Algorithm 2 This algorithm describes a metaheuristic method for selecting the
synaptic weights of a FFNN such that a cost function is minimized. Inputs: ω0, a
weight matrix specifying the synaptic weights for a neural network; this variable is
generally, but not necessarily, randomly generated. X, a data set. C, a cost func-
tion de�ned on a data set and weight matrix. T (·), a temperature schedule function,
as described in Section 2.2, which returns the temperature value given the number
of elapsed epochs, t. ε, a minimum temperature value which, once attained, causes
the algorithm to halt; values of ε less than or equal to 0.0 may prevent the algo-
rithm from halting, and are therefore invalid inputs. G, a random-matrix production
function which produces matrices according to some speci�ed distribution. A, a
random-matrix production function which produces matrices according to some spec-
i�ed anisotropicity function. Outputs: ωopt, a weight matrix specifying the weight
state which corresponds to the minimum cost function value, given the input param-
eters.
1: procedure SynapticAnnealing(ω0, X, C, ε, G, A)
2: ω ← ω0 . Initialize the weight matrix.
3: t← 1 . Initialize the time.
4: c← (C(ω,X)) . Initialize the cost.
5: while T (t) > ε do . Iterate until the temperature schedule is less than ε.
6: ω′ ← ω + α(G + A) . Apply the neighborhood function by perturbing ω.
7: c′ ← C(ω′, X) . Compute the cost of ω′ on the data set X.
8: ∆C ← (c− c′) . Compute the cost change.
9: if (∆C ≤ 0) ∨ (exp(∆C/T (t)) > U (0, 1)) then . Apply Metropolis

criterion.
10: ω ← ω′

11: c← c′

12: end if
13: t← t+ 1 . Increment the time.
14: end while
15: ωopt ← ω . Declare the optimal solution.
16: return (ωopt) . Return the optimal solution.
17: end procedure

3.6 Weight Space Traversal

In SA, the purpose of the neighborhood function is to control the traversal of

the solution space of the problem. For synaptic annealing, the solution space is the

synaptic weight space, thus synaptic annealing neighborhood functions control the

52

www.manaraa.com

u1

u2 Output

Hidden
layer

w1

w2

Input
layer

Output
layer

Figure 7. The feed-forward neural network used in the weight space traversal evalua-
tions.

traversal of the weight space. The performance of a neighborhood function is entirely

dictated by the weight space traversal, or walk, that it produces. In order to charac-

terize the traversal properties of each neighborhood function, a traversal through a

two-dimensional subset of the weight space is analyzed for each neighborhood func-

tion. A small FFNN, with two input neurons, two hidden layer neurons, and a single

output layer neuron, is trained using synaptic annealing to solve a simple functional

approximation problem. This network is depicted in Fig. 7. The network uses a

tanh(·) activation function, an initial annealing temperature of 10, and an initial

learn rate of α = 0.001.

The test function is the complex-interaction function used in [11], which is given

by

fCI(u1, u2) = 1.9(1.35+ e0.5(u1+1) sin(13(0.5u1−0.1)2)e0.5(u2+1) sin(3.5u2 +3.5)). (55)

This function is used because it allows for comparison with published results, and has

several features that make it useful when studying generalization error. In this section,

fCI is used for demonstrative purposes only; a detailed description of the function can

be found in Section 4.1. The synaptic annealing algorithm attempts to minimize the

squared error (SE) cost function, as de�ned in Section 3.4, on 100 randomly-drawn

samples from fCI. The validation error of the synaptic annealing algorithm is also

evaluated using an additional 100 randomly drawn samples, which are not presented

53

www.manaraa.com

to the algorithm during training. The same validation and training samples are used

for the analysis of the weight space traversal produced by each neighborhood function.

This section contains an analysis of the weight space traversal properties of synaptic

annealing during a relatively short training period. A more thorough analysis of the

performance of synaptic annealing on this problem is presented in Chapter IV. For

each neighborhood function, the traversal through the ω1,1,1-ω2,2,1 space is analyzed.

ω1,1,1 is the synaptic weight from input neuron 1 to hidden neuron 1, while ω2,2,1

is the synaptic weight from input neuron 2 to hidden layer neuron 2. The weight

space traversal behavior of the algorithm is empirically found to be independent of

the speci�c choice of weights. In the interest of expedience and conciseness, in this

section a traversal produced by a synaptic annealing algorithm using a neighborhood

function for which the visiting distribution is x, will be called a x traversal.

Gaussian Neighborhood Function Weight Space Traversal.

The weight space traversal exhibited by the Gaussian visiting distribution is con-

sistent with a Gaussian random walk, as shown in Fig. 8 (Left). A single exemplary

traversal is shown in Fig. 8; while the �gure contains only one traversal, several iden-

tical experiments are conducted to ensure that the exemplar shown in the �gure, as

well as in Fig. 9, Fig. 10, Fig. 11, and Fig. 12, are typical of the execution of the

algorithm.

Fig. 8 (Left) indicates that the traversal begins near the origin of the weight space

and proceeds outward. The initial location is dictated by the values to which the

weights in the FFNN are initialized, which are always random and small in magnitude

in this work. The traversal proceeds to higher-magnitude weights as it follows the

local cost surface of the training data set. Initially, most moves are accepted, indicated

by a solid line in the �gure, because the temperature is high during the �rst several

54

www.manaraa.com

(Left) (Right)

Figure 8. (Left) A plot showing the traversal of the w1, w2 subspace of the weight space
over the course of 5, 000 epochs produced by a synaptic annealing algorithm employing
a Gaussian visiting distribution. A solid line indicates a move which was accepted
by the simulate annealing algorithm, while a dashed line indicates a move which was
rejected. In this �gure, only a few rejected moves are visible. The word start indicates
the initial value of (w1, w2), while the word end denotes the �nal value. (Right-Top) A
plot showing the both the training and validation MSE of the results produced by the
neural network in each epoch, smoothed using a central moving window average with
a width of 21. This is the post-perturbation error, meaning that the error associated
with moves that were rejected is shown. (Right-Bottom) A plot showing the sum of
squared weights of the neural network during each training epoch.

training epochs. As the traversal proceeds and the temperature is lowered, the number

of rejected moves, indicated by a dotted line, increases. The algorithm settles in a

local minima at w1 = 0.075 w2 = −0.83. Examining Fig. 8 (Right), a clear downward

trend in training error exists, and upward trend in sum of squared weights is present.

It is also clear that there is no trend in the validation error after an initial period

of decline. Because large synaptic weights tend to cause their a�erent neurons to

behave like biases, these trends are interpreted as the network memorizing the training

data through the construction of �ne-tuned biases. Thus, given su�cient time and

su�ciently-many free parameters, the training error will become arbitrary low, while

the validation error will remain relatively large.

55

www.manaraa.com

Cauchy Neighborhood Function Weight Space Traversal.

A neighborhood function based on a Cauchy visiting distribution produces a very

di�erent traversal pattern than the Gaussian visiting distribution. Fig. 9 (Left) shows

that a Cauchy visiting distribution causes a traversal that is prone to very long jumps

through single dimensions in the weight space; note the di�erence in scale on the w1

axis, relative to that of the traversal plot displayed in Fig. 8 (Left). This long-

jump exploration behavior can be explained as a consequence of the shape of the

Cauchy distribution. As can be seen in Fig. 4 and Fig. 5, the tails of the Cauchy

distribution are longer than those of the Gaussian distribution. This tail characteristic

translates to a low, but non-zero probability of producing a long jump in a given

dimension, thus enabling long jumps. However, because the probability of a long

jump is low, it is unlikely to occur in both of the examined dimensions simultaneously,

thereby producing the distinctive single-dimensional search pattern exhibited by the

Cauchy visiting distribution. A closer inspection of Fig. 9 (Left) reveals that the

Cauchy visiting distribution produces a traversal which is similar to that of Gaussian

distribution when the generated traversal distances remain near the mean.

One can see how the traversal characteristics of a Cauchy visiting distribution ef-

fect the performance of a synaptic annealing algorithm by examining Fig. 9 (Right).

Unlike the results generated by the Gaussian visiting distribution, the results in the

upper plot of Fig. 9 (Right) show a downward trend in training error. The val-

idation error initially follows the downward trend in training error, but begins to

increase around epoch 2500. This increase in validation error, while the training

error decreases, is evidence of over�tting. A complication associated with the use

of a Cauchy visiting distribution for synaptic annealing is visible in Fig. 9 (Right)

at approximately epoch 2500. Starting at this epoch, and continuing for the next

few epochs, the sum of squared weights increases considerably, indicating that a sig-

56

www.manaraa.com

(Left) (Right)

Figure 9. (Left) A plot showing the traversal of the w1, w2 subspace of the weight space
over the course of 5, 000 epochs produced by a synaptic annealing algorithm employing
a Cauchy visiting distribution. A solid line indicates a move which was accepted by the
simulate annealing algorithm, while a dashed line indicates a move which was rejected.
In this �gure, only a few rejected moves are visible. The word start indicates the initial
value of (w1, w2), while the word end denotes the �nal value. (Right-Top) A plot showing
the both the training and validation MSE of the results produced by the neural network
in each epoch, smoothed using a central moving window average with a width of 21.
This is the post-perturbation error, meaning that the error associated with moves that
were rejected is shown. (Right-Bottom) A plot showing the sum of squared weights of
the neural network during each training epoch.

ni�cant change in the network occurred. This change decreased the training error

marginally, while increasing the validation error. As the sum of squared weights in-

creased throughout the remainder of the training process, the validation error and

training error diverged considerably. Near the end of the training process, the train-

ing error decreases by about half while the validation error nearly doubles. Thus

the data in Fig. 9 provides strong (albeit circumstantial) evidence that the Cauchy

visiting distribution results in a biased neural network. Further, there is no reason to

conclude that this biasing problem would improve, if given additional training time.

57

www.manaraa.com

Isotropic GSA Neighborhood Function Weight Space Traversal.

The weight space traversal produced by a neighborhood function using an isotrop-

ically applied GSA visiting distribution is displayed in Fig. 10 (Left). This traversal

produces a homogeneous pseudo-global search pattern indicative of GSA. As with

the Cauchy visiting distribution neighborhood function, the traversal produced by

the GSA distribution neighborhood function can be explained as a consequence of

the distributions tail characteristics. The GSA distribution used to construct the

traversal in Fig. 10 (Left) had the parameters qV = 2.5, TqV , and D = 1. As can be

seen in the lower plot of Fig. 4 and Fig. 5, the GSA distribution, using the parame-

ters indicated, has signi�cantly heavier and longer tails than the Cauchy distribution.

This translates to a traversal which exhibits jumps that are longer and considerably

more frequent, relative to a Cauchy traversal.

Given the observation, made in Section 3.6, that large jumps through the weight

space tend to create synaptic weights that cause their a�erent neurons to behave

as biases, it is expected that the GSA traversal will readily produce such bias-like

neurons. Fig. 10 (Right) provides evidence that this prediction is correct. The lower

plot of Fig. 10 (Right) indicates that the sum of squared weights created by the GSA

traversal surpasses the largest value observed in the Cauchy traversal at epoch 250. It

should therefore be expected that a subsequent steep decrease in training error occurs;

this is indeed what is observed in the upper plot of Fig. 10 (Right). Further, it should

be expected that the validation error will decrease as well, in so far as the training

set is representative of the entire data set, but not to the same extent as the training

error. Additionally, the validation error should gradually diverge from the training

error as the sum of squared weight increases. These predicted characteristics, too, are

present in Fig. 10 (Right). In order to reduce the generalization error introduced by

these features of the GSA neighborhood function when applied to synaptic annealing,

58

www.manaraa.com

(Left) (Right)

Figure 10. (Left) A plot showing the traversal of the w1, w2 subspace of the weight space
over the course of 5, 000 epochs produced by a synaptic annealing algorithm employing
an isotropic GSA visiting distribution. A solid line indicates a move which was accepted
by the simulate annealing algorithm, while a dashed line indicates a move which was
rejected. In this �gure, only a few rejected moves are visible. The word start indicates
the initial value of (w1, w2), while the word end denotes the �nal value. (Right-Top) A
plot showing the both the training and validation MSE of the results produced by the
neural network in each epoch, smoothed using a central moving window average with
a width of 21. This is the post-perturbation error, meaning that the error associated
with moves that were rejected is shown. (Right-Bottom) A plot showing the sum of
squared weights of the neural network during each training epoch.

an anisotropic modi�cation of the distribution is examined in the following section.

Anisotropic GSA Neighborhood Function Weight Space Traversal.

Fig. 11 (Left) is an example weight space traversal produced by a neighborhood

function which uses a GSA distribution with weight anisotropicity. As de�ned in

Section 3.3, the weight anisotropicity is an operator applied to the weight perturbation

matrix. For each weight in the network, the operator shifts the mean of the visiting

distribution for that weight closer to the origin in proportion to the magnitude of the

weight. Thus, the further a synaptic weight is from zero, the more the mean of its

visiting distribution will be shifted toward zero. The e�ect of the weight anisotropicity

operator is to reduce the likelihood of weight space jumps that result in a state far from

59

www.manaraa.com

the origin of the weight space. Contrasting Fig. 11 (Left) and Fig. 10 (Left), it is clear

that the former depicts a traversal that has the homogeneous search characteristics of

a GSA traversal, while simultaneously avoiding protracted traversals into large weight

space values.

(Left) (Right)

Figure 11. (Left) A plot showing the traversal of the w1, w2 subspace of the weight
space over the course of 5, 000 epochs produced by a synaptic annealing algorithm
employing a GSA visiting distribution with synaptic weight-based anisotropicity. A
solid line indicates a move which was accepted by the simulate annealing algorithm,
while a dashed line indicates a move which was rejected. In this �gure, only a few
rejected moves are visible. The word start indicates the initial value of (w1, w2), while
the word end denotes the �nal value. (Right-Top) A plot showing the both the training
and validation MSE of the results produced by the neural network in each epoch,
smoothed using a central moving window average with a width of 21. This is the post-
perturbation error, meaning that the error associated with moves that were rejected
is shown. (Right-Bottom) A plot showing the sum of squared weights of the neural
network during each training epoch.

If properly constructed, the weight anisotropicity mechanism prevents weights

from becoming large enough to saturate neurons in the network. Theoretically, this

is a desirable characteristic for a neighborhood function as it will prevent very large

weights from arising in the network, which prevents the creation of saturated neurons.

A network with fewer saturated neurons acting as biases will be less biased, by de�ni-

tion. A synaptic annealing algorithm using a weight anisotropic GSA neighborhood

function should yield lower validation set errors, relative to an algorithm that uses

60

www.manaraa.com

an isotropic GSA neighborhood function. In the upper plot of Fig. 11 (Right), the

validation and training error for the traversal shown in Fig. 11 (Left) are displayed.

In contrast to the preceding weight space traversal performance plots, the training

and validation error of the weight anisotropic GSA traversal are found to be in close

agreement. Additionally, the lower plot of Fig. 11 (Right) indicates that there is no

signi�cant trend in the sum of squared weight values for the network, which is also a

property unique to the weight anisotropic GSA neighborhood function. These results

indicate that weight anisotropicity may serve as an alternative weight minimization

technique to the multiobjective simulated annealing approach described in [11].

Uniform Neighborhood Function Weight Space Traversal.

The weight space traversal produced by a uniform neighborhood distribution,

shown in Fig. 12 (Left), is very similar to that of a Gaussian neighborhood function.

The most signi�cant di�erence between the traversals is total area of the weight space

explored. The Gaussian traversal covers considerably more area than the Uniform

traversal. This behavioral di�erence is the result of the fact that the uniform dis-

tribution is over the range
[
−1

2
, 1

2

]
, which is much smaller than the domain of the

standard normal distribution.

Examining the training error performance shown in Fig. 12 (Right), it is clear

that the exemplar uniform neighborhood function signi�cantly under-performed, with

respect to the Gaussian neighborhood function. This de�ciency can be explained

primarily as a consequence of the fact that the uniform distribution has compact

support. The restricted search range combined with the learning rate used in these

traversal experiments yield very little change in the state of the network, as illustrated

in the sum of squared weights plot displayed in the lower pane of Fig. 12 (Right).

Though the preceding analysis is based only on the support interval
[
−1

2
, 1

2

]
,

61

www.manaraa.com

(Left) (Right)

Figure 12. (Left) A plot showing the traversal of the (w1, w2) subspace of the weight
space over the course of 5, 000 epochs produced by a synaptic annealing algorithm
employing a visiting distribution which is uniform over the range

[
− 1

2 ,
1
2

]
. A solid line

indicates a move which was accepted by the simulate annealing algorithm, while a
dashed line indicates a move which was rejected. In this �gure, only a few rejected
moves are visible. The word start indicates the initial value of (w1, w2), while the
word end denotes the �nal value. (Right-Top) A plot showing the both the training
and validation MSE of the results produced by the neural network in each epoch,
smoothed using a central moving window average with a width of 21. This is the post-
perturbation error, meaning that the error associated with moves that were rejected
is shown. (Right-Bottom) A plot showing the sum of squared weights of the neural
network during each training epoch.

myriad support intervals are found to yield similar results. For small intervals, the

compact support of the uniform distribution prevents pseudo-local search, thereby

reducing the chance of escaping local minima. For large intervals, very little local

gradient descent occurs, resulting in a random search of the weight space. Thus, the

uniform visiting distribution is empirically found to yield results which are inferior

to those of other visiting distributions. As such, the uniform visiting distribution is

excluded from analysis in Chapter IV.

Comparing Weight Space Traversal Methods.

It is instructive to directly compare the traversals produced by the various distri-

butions considered in the preceding sections. Fig. 13 displays these traversals on a

62

www.manaraa.com

common weight space; several interesting traversal characteristics are present. The

impact of anisotropicity on the traversal characteristics of the synaptic annealing

algorithm are demonstrated by the di�erence in the weight-space location in which

the respective searches occur: The anisotropic traversal is limited to a range near

the origin, while the isotropic traversal searches a higher magnitude region of the

weight space. The relatively diminutive total traversal length of both the Gaussian

and uniform neighborhood functions are also apparent when compared to the range

of the traversals produced by the other visiting distributions. The regression error

performance of the each neighborhood function is displayed in Table 1.

(Left)

Figure 13. (Left) A plot juxtaposing the weight space traversals of produced by a
synaptic annealing algorithm employing several di�erent visiting distributions.

Examining Table 1 suggests a few trends. As would be expected, the training set

MSE of GSA is considerably lower than that of FSA (Cauchy visiting distribution),

63

www.manaraa.com

Table 1. Training and Validation Set Mean Squared Error at Epoch 5, 000

Neighborhood Function Visiting Distribution Training Error Validation Error

Gaussian 0.05549 0.07743
Cauchy 0.03028 0.08878

Isotropic GSA 0.07390 0.07202
Weight Anisotropic GSA 0.06947 0.07229

Uniform 0.16111 0.14773

which is in turn better than CSA (Gaussian visiting distribution). These �ndings

are consistent with previous �ndings [46, 45] regarding the e�ciency of various SA

implementations. Interestingly, the MSE of the validation set, which in this case is

speci�c to the problem of FFNN synaptic weight selection, does not follow this trend.

While it may seem that introducing weight anisotropicity only served to increase

the �nal training set MSE of the synaptic annealing algorithm, the mechanism that

produced this increase in error is actually advantageous, as discussed in Section 3.6.

64

www.manaraa.com

IV. Experimental Results and Analysis

This chapter contains a complete description of the design of experiments used

to evaluate the e�ectiveness of the various implementations of synaptic annealing

described in Chapter III. Several data sets are employed in these experiments, and

each is described in detail; relevant features of the data seats are highlighted. The

experimental methodology used is described and justi�ed. Finally, each set of results

is analyzed and relations are drawn between the structure of synaptic annealing, and

the produced results.

4.1 Design of Experiments

In this section the experimental design used to evaluated the performance of synap-

tic annealing is described. The section contains descriptions of several data sets, and

the properties thereof. The preprocessing procedure, which is applied to each data

set before any network training occurs, is detailed and justi�ed. The algorithmic

parameters used to perform the experiments using synaptic annealing are speci�ed

and discussed.

Data Sets.

The foundation of the experimental framework used to evaluate the synaptic an-

nealing methodology is set of data sets to which the methodology is applied. In

order to ensure that the methodology is generally applicable, it is applied to several

di�erent data sets which vary in complexity and organization. These data set can

be partitioned into two broad classes: classi�cation and regression, each of which is

discussed in the following section. Table 2 summarizes some basic properties of each

data set.

65

www.manaraa.com

Table 2. A summary of each of the classi�cation data sets

Data Set Name Input Vector Dimensionality Number of Classes Observations

Wine 13 3 178
Iris 4 3 150

Cancer 30 2 569

Classi�cation Data Sets.

Three data sets were selected to evaluate the e�ectiveness of synaptic annealing

when applied to classi�cation problems. Each data set has a di�erent number of input

dimensions, as well as di�erent class distributions; additionally, each data set comes

from a separate discipline. All data sets are publicly available for download from the

University of California at Irvine Machine Learning Repository [52].

The �rst data set is the Wine data set, which has 178 observations of 13 input

dimensions and a single classi�cation dimension, for which there are three possible

levels. The second data set is the Iris data set. Perhaps the most widely-used data

set in machine learning, the Iris data set consists of 150 observation of four input

dimensions, and a single classi�cation dimension, for which there are three possible

labels. The input data consists of four measurements of plant physiology, and the

classi�cation label is the species of the measured plant. The Iris data set is selected

both for its popularity, which provides ample opportunity for comparison to other

machine learning techniques, and for the fact that two of the species classi�cations are

not linearly separable in the input dimensionality, while one is not. The classi�cation

of the data samples are equally distributed, with 50 samples of each of the three

classes, which ensures that any randomly selected subset of the data is likely to

also have a equal distribution of classes. Finally, the algorithms performance on

the Wisconsin Breast Cancer data set is evaluated. This data set, henceforth called

the Cancer data set, is a binary classi�cation problem with 569 observations of a

66

www.manaraa.com

30-dimensional input vector.

The Wine, Iris, and Cancer data sets are chosen to serve as the trial data sets for

classi�cation problems for several reasons. The data sets are examined in other work,

and thus enable comparison to previous results. Each problem is relatively small,

thereby enabling a robust analysis consisting of a large number of trials, which is

essential for evaluating the e�ectiveness of stochastic procedures. This thesis focuses

on the theoretical construction and rigorous evaluation of synaptic annealing, rather

than on the application of synaptic annealing ot any particular type of problem.

As such, though synaptic annealing is applicable to more complex data sets, this

application is deferred to future work.

Regression Data Sets.

Regression performance is evaluated using two two-dimensional functions. The

�rst regression trial function is the complicated interaction function, which is given

mathematically by

fCI(u1, u2) = 1.9(1.35+ e0.5(u1+1) sin(13(0.5u1−0.1)2)e0.5(u2+1) sin(3.5u2 +3.5)), (56)

and is shown in Fig. 14. This function is chosen for the subtly of the interaction

of the two input variable, which creates the potential for high generalization error.

The complicated interaction function is also employed in [11], where it is used to

characterize the generalization error of a neural network trained using simulated an-

nealing. Thus, using the complicated interaction function also allows for a direct

comparison with previously-published results form a methodology which is relatively

similar to the one constructed in this thesis. This comparison is of particular interest

when evaluating the performance of the weight-anisotropic GSA variant of synaptic

annealing, as it is designed to have a similar e�ect to that of the MOHGSA approach

67

www.manaraa.com

(Left) (Right)

Figure 14. (Left) A plot displaying the surface produced by the complicated interaction
function, fCI, in two dimensions (u1, u2). (Right) A color contour plot of the complicated
interaction function.

advocated in [11] on generalization error. In order to construct a suitable data set

for the synaptic annealing algorithm, 100 randomly-selected (u1, u2) pairs are drawn

uniformly from the range [−1, 1], and the corresponding values of fCI are computed

according to Eq. (56).

The second regression problem analyzed in this thesis is the harmonic function,

which is given by

fH(u1, u2) = sin

(
2π
√
u2

1 + u2
2

)
, (57)

and is shown in Fig. 15. This function was also used in [11], thereby enabling com-

parison with published results. In [11], the harmonic function is found to be more

likely to induce over�tting errors, and consequently yields higher generalization error

rates than the complicated interaction function.

Data Preprocessing.

Two preprocessing transforms are applied to the input patterns for all data sets:

the mean of the data in that input pattern is removed, and the range of the data

68

www.manaraa.com

(Left) (Right)

Figure 15. (Left) A plot displaying the surface produced by the harmonic function, fH ,
in two dimensions (u1, u2). (Right) A color contour plot of the harmonic function.

is scaled. For the classi�cation dimension, of which there is only one in each of the

data sets used in this thesis, the data labels are orthogonalized. Orthogonalization

of classi�cation labels converts a single classi�cation dimension with n possible labels

into an n-dimensional representation, in which only one dimension is non-zero for

any given data observation. This transform enables regression error-based training

algorithms to include false positives and false negatives when computing the error as-

sociated with an input pattern. Finally, the order in which observations are presented

to the network is random.

Performance Evaluation.

There are several methods available for evaluating the performance of neural net-

works on a problem set. For classi�cation problems, such as the Wisconsin breast

cancer data set, the classi�cation error described in Section 3.4 is used. For regression

problems, such as the complex interaction problem, the performance of synaptic an-

nealing is reported in terms of the squared regression error described in Section 53. In

this work, a distinction is made between the training cost function, and the reporting

69

www.manaraa.com

cost function. The training cost function is the cost function that is applied to a neu-

ral network and data set during the training process in order to inform the training

process. The reporting cost function is never used to inform the training process, but

will always be used to report the performance of a synaptic con�guration on a given

data set. This distinction is relevant to the training performed on the classi�cation

data sets, for which the regression error can be used to train the algorithm, but is

meaningless when trying to determine how e�ective the resultant neural network is

at classifying data set observations.

In this thesis, the performance measure for a synaptic weight con�guration, for

a given data set, is the n-fold cross validated mean cost function value for that

weight con�guration and data set. The cost function value is the value of Cc for

classi�cation problems, or Cr for regression problems. In order to perform a n-fold

cross validated evaluation of the algorithm on a given data set the data must be

randomly partitioned into n separate sets, often called folds. Of the n folds, one is

designated a validation set, and the remaining (n−1) fold are designated the training

set. The training set is subset of the data to which the synaptic annealing algorithm

has access during training. The validation set is not used by the synaptic annealing

algorithm in any way during training. A di�erent FFNN is randomly initialized

and trained on each training set. The neural network constructed by the synaptic

annealing algorithm is periodically applied to the validation set to produce a time-

series of validation set cost function values. These cost function values are an e�ective

analog for the generalization performance of the neural network. To construct a n-fold

cross validated estimation of the time series validation set performance, the training

process is accomplished n times, each time with a di�erent fold acting as the validation

set. The mean and standard deviation, as well as other statistical measures, of these

n time series validation set performance measures can then be produced at each time

70

www.manaraa.com

step to reveal how the cost function value a neural network produced by synaptic

annealing changes through training time.

Con�guration.

The feed forward neural network and simulated annealing algorithms each have a

considerable number of tunable parameters which must be speci�ed before they can

be applied to a problem. Synaptic annealing, being a synthesis of the two, inherits

the parameters of both and, before it can be evaluated, these parameters must be

speci�ed. In this section the parameters chosen will be described and the rational for

those choices will be given.

Feed Forward Neural Network Con�guration.

For all experiments presented in the Section 4.2 and Section 4.2, the trained neural

network has an input layer which is the size of the input dimensionality of the data

set to which it is being applied, and an output layer which is the size of the number

of classes in that data set. The network contains a single hidden layer comprising

20 neurons; the size of the hidden layer was chosen through empirical observation

of the performance of the algorithm on the data sets considered in this thesis, using

both classi�cation and regression training error. When conducting the experiments

to determine the size of the hidden layer, it was observed that the hidden layer size

which produced the best performance depended signi�cantly on the cost function

used when training the algorithm. For synaptic annealing algorithms trained using

the regression error, the size after which larger hidden layers produced no signi�cant

gain in performance is about 10; at about 75 hidden layer neurons, the performance

begins to degrade signi�cantly. In contrast, synaptic annealing algorithms trained

using the classi�cation cost function require about 20 hidden layer neurons to achiever

71

www.manaraa.com

comparable results, though the hidden layer size at which the results begin to degrade

remains about the same. Thus, a hidden layer size of 20 neurons is chosen for all

classi�cation data sets because it ensures a fair comparison between the best possible

performance of synaptic annealing algorithms using both classi�cation and regression

training cost functions. The degradation in performance observed, regardless of cost

function, once the hidden layer size exceeds approximately 75 neurons is likely a

consequence of the size of the search space caused by the inclusion of very large hidden

layers. Further investigation is required to determine if it is possible to overcome this

limitation and, if so, how. A suggested course of inquiry is detailed in Section 5.2.

Simulated Annealing Con�guration.

All variations of SA require the speci�cation of a temperature schedule, which

dictates how the scholastic control parameter for the acceptance criterion changes

through training time. In this thesis, all results are produced using the FSA temper-

ature schedule given by Eq. (35). The FSA temperature schedule empirically produces

the best performance over time scale of evaluation used in this thesis. This improved

performance comes at the risk of the CSA algorithm experiencing the freezing prob-

lem; this does not, however, emerge as a problem in practice, which may indicate

that most local minima on the cost surface of most problems correspond to relatively

low-cost con�gurations. The initial acceptance criterion temperature, T0 = 100, in

all experiments. This value is chosen because it is on the order of the largest cost

function values encountered during training, for all data sets used in this thesis. This

choice of scale for the temperature parameter is essential because is enables the global

search of the weight space in the high temperature limit. If the temperature is too

small, when compared to the scale of the cost function output values for a given data

set, the acceptance criterion would all reject nearly cost-increasing moves, even at the

72

www.manaraa.com

maximum temperature. An initial learning rate α = 0.01 is used, and is empirically

selected. Additionally, a learning rate schedule is implemented such that the learning

rate is instantaneously decreased by a factor of 10 every 100, 000 training epochs.

This decrease in learning rate is coupled with a reset of the temperature parameter

to its initial value. This process, also known as reannealing [44], is done to ensure

that the global search behavior of simulated annealing is replicated each time the

learning rate is decreased. Otherwise, a rapid decrease in learning rate could trap the

algorithm in a local minimum.

Additional parameter speci�cations are required for isotropic and anisotropic GSA.

Speci�cally, the dimensionality D and the shape parameter qV from Eq. (40) must be

selected. Here D = 1, because the visiting distribution is used to select the change

in each synaptic weight independently and, as such, it is the a distribution over a

single dimension for any given sampling from the distribution. The shape parameter,

qV , is empirically selected; it is determined that qV = 2.6 produces the lowest-cost

distribution in almost all cases; with qV = 2.6, the weight space traversal exhibits

almost no local gradient descent. In GSA an additional stochastic control parameter,

TqV , is introduced. As can be seen in Fig. 4 and Fig. 5, this parameter provides ad-

ditional control over the shape of the visiting distribution. In some implementations

of GSA TqV decays over time, or is linked to the acceptance criterion temperature,

both of which result in a search which becomes more local over time. However, it

is not necessary to modify this parameter at all during execution, provided that the

initial value results in a distribution which is e�ective for weight space traversal. In

this thesis, TqV (t) = 1 ∀t, thus is unmodi�ed during training. Future work extending

synaptic annealing should investigate the impact of implementing the many possi-

ble decay schedules for TqV . All parameters relevant to the operation of simulated

annealing in this thesis are summarized in Table 3.

73

www.manaraa.com

Table 3. This table lists the parameters chosen for the synaptic annealing experiments.

Synaptic Annealing Parameters
Parameter Type Parameter Value

FFNN
Number of Hidden Layers 1
Hidden Layer Size 20

SA
Initial Temperature (T0) 100
Temperature Decay Function T0/t (where t is epochs elapsed)
Reannealing Frequency 100, 000 epochs

Learn
Rate

Initial Learning Rate (α) 0.01
Learning Rate Step Size 0.1
Learning Decrease Frequency 100, 000 epochs

GSA
qV 2.6
TqV 1
D 1

4.2 Experiment Results

This section presents the results of the experiments conducted to evaluate the

performance of synaptic annealing. The section is divided into two subsections; the

�rst presents the results of synaptic annealing training experiments on several classi�-

cation data sets, while the second evaluates the algorithms performance when applied

to regression data sets.

Classi�cation Results.

This section presents the classi�cation performance of FFNNs trained using synap-

tic annealing. The four synaptic annealing variants described in Section 3.1 are ap-

plied to each of the three classi�cation problems described in Section 4.1, using both

of the cost functions given in Section 3.4. The converged 10-fold cross validated

classi�cation error (mean and standard deviation) obtained from each experimental

con�guration is summarized in Table 4 and Table 5. The sum of squared weight is

not reported as a performance metric in this chapter. This measure of performance is

used in the initial exploration of the weight-space exploration behavior. However, the

74

www.manaraa.com

Table 4. The mean classi�cation error using the regression training cost function.

Classi�cation Error using the Regression Cost Function
Data Set N µ σ

Wine

Gaussian 0.0052 0.0166
Cauchy 0.0 0.0
GSA 0.0105 0.0333
GSA - WA 0.0211 0.0368

Iris

Gaussian 0.0750 0.1740
Cauchy 0.0508 0.0657
GSA 0.0313 0.0442
GSA - WA 0.0317 0.0334

Cancer

Gaussian 0.0347 0.0165
Cauchy 0.0400 0.0276
GSA 0.0382 0.0234
GSA - WA 0.0259 0.0186

results presented in this section are evaluated in terms of validation set error. Valida-

tion set error serves as an estimate of generalization performance, thereby rendering

the sum of squared errors redundant.

Gaussian Neighborhood Function Results.

In the analysis of simulated annealing variants, the CSA variant of synaptic an-

nealing serves as the baseline for comparison between variants. The CSA variant

of synaptic annealing is chosen because it is the variant with the simplest visiting

distribution, and is expected to have the worst performance. As such, it is the �rst

variant considered. Fig. 16 displays the time evolution of the 10-fold cross validated

validation set classi�cation error for FFNNs trained using synaptic annealing with a

Gaussian neighborhood function, using both the classi�cation (Right) and SE-based

(Left) cost functions.

Examination of Fig. 16 reveals several informative classi�cation performance char-

acteristics. Most strikingly, the classi�cation performance achieved by a neural net-

work trained by synaptic annealing employing the classi�cation cost function during

75

www.manaraa.com

Table 5. The mean classi�cation error using the classi�cation training cost function.

Classi�cation Error using the Classi�cation Cost Function
Data Set N µ σ

Wine

Gaussian 0.2350 0.2050
Cauchy 0.0 0.0
GSA 0.0125 0.0395
GSA - WA 0.0 0.0

Iris

Gaussian 0.4270 0.2050
Cauchy 0.0438 0.0422
GSA 0.0438 0.0593
GSA - WA 0.0625 0.0977

Cancer

Gaussian 0.1710 0.2680
Cauchy 0.0552 0.0421
GSA 0.0362 0.0287
GSA - WA 0.0362 0.0263

(Left) (Right)

Figure 16. Classi�cation error vs. training epoch, where µ+ σ are reported for each of
the three classi�cation problems (Wine-blue, Iris-green, and Cancer-red), for synaptic
annealing using a Gaussian neighborhood function with a (Left) regression and (Right)
classi�cation training error function.

training is considerably poorer than one trained using the regression cost function.

This phenomenon is produced by the con�uence of two factors: the highly-local traver-

sal behavior caused by the Gaussian neighborhood functions and the �at, discontinu-

ous cost surface produced by the classi�cation cost function1. Given this explanation,

1The classi�cation cost function produces a �at cost surface which changes discontinuously in
weight space, because the classi�cation cost function value for a given sample can be only zero or

76

www.manaraa.com

it is anticipated that pseudo-local search algorithms, such as FSA and GSA, should

overcome the limitations of the classi�cation training cost function. A A baseline

performance for both the classi�cation data sets are established in Fig. 16 (Left).

The Wine classi�cation error converges to about 2%, the Cancer classi�cation error

converges to approximately 4% and the Iris classi�cation error converges to approxi-

mately 7%, with a relatively large standard deviation. The large standard deviation

seen with the Iris data set arises from the fact that, of the 10 underling cross-validation

training experiments, several converge to perfect, or near-perfect classi�cation, and

several become bound in local minima on the cost surface thereby remaining at rela-

tively high classi�cation error values. Again, it is predicted that pseudo-local search

algorithms enable escape from these local minima. As such, they should result in

classi�cation performance results with considerably lower standard deviations.

Cauchy Neighborhood Function Results.

A neural network trained using synaptic annealing with a Cauchy neighborhood

function is expected to exhibit faster convergence to a lower error state, relative to one

trained with a Gaussian neighborhood function. This behavior is predicted because

of the ability of synaptic annealing using a Cauchy neighborhood function to perform

pseudo-local searches in the weight space. In Fig. 17, this prediction is validated.

The Cauchy distribution produces neural networks which are able to perfect classify

both the training and validation sets for Wine data set in about 100, 000 epochs.

Additionally, the mean classi�cation error on the Iris data set is reduced considerably,

as well as the standard deviation.

The most substantial di�erence between the performance of the Gaussian and

one; the observation is either correctly classi�ed, or it is not. Thus, the value of the cost function
when applied to a data set, which is the sum of cost function values for each sample, may only take
the value of the integers between zero and the cardinality of the data set. Since the cost surface may
only take integer values, but is de�ned on the real-valued range of the synaptic weights, it must be
discontinuous and have no gradient between discontinuities.

77

www.manaraa.com

(Left) (Right)

Figure 17. Classi�cation error vs. training epoch, where µ+ σ are reported for each of
the three classi�cation problems (Wine-blue, Iris-green, and Cancer-red), for synaptic
annealing using a Cauchy neighborhood function with a (Left) regression and (Right)
classi�cation training error function.

Cauchy neighborhood variants of synaptic annealing is the performance of the algo-

rithm when using the classi�cation cost function as the training cost function. The

di�erences in the classi�cation error time evolution between the regression and classi-

�cation training cost functions seen in Fig. 16 are not present in Fig. 17. This ability

to learn from the data using the classi�cation cost function can be attributed di-

rectly to the pseudo-local search behavior of Cauchy neighborhood function synaptic

annealing, which is in turn caused by the larger tails of the Cauchy distribution.

GSA Neighborhood Function Results.

As discussed in Section 3.6 the GSA neighborhood function results in a more

homogeneous search of the weight space, relative to the Cauchy and Gaussian neigh-

borhood functions. Thus, the weight con�gurations found should, given a su�cient

number of epochs, be superior to those found by other neighborhood functions. The

results displayed in Fig. 18, Table 5, and Table 4 suggest that this is the case. For

both the Iris and Cancer data sets, using both the classi�cation and regression cost

78

www.manaraa.com

function, the GSA neighborhood yields a lower �nal cross-validated classi�cation error

mean and standard deviation.

(Left) (Right)

Figure 18. Classi�cation error vs. training epoch, where µ+ σ are reported for each of
the three classi�cation problems (Wine-blue, Iris-green, and Cancer-red), for synaptic
annealing using a GSA neighborhood function with a (Left) regression and (Right)
classi�cation training error function.

Anisotropic GSA Neighborhood Function Results.

The most notable result attributed to the anisotropic neighborhood function is

the mean cross-validated error on the Cancer data set, given a regression cost func-

tion. While all other methods fail to achieve a mean error of less than 0.035 on the

Cancer data set, the anisotropic GSA neighborhood function achieves a mean error

of 0.026 at epoch 300, 000. The Cancer data set is the most challenging used in this

analysis, precisely because the number of positive examples is small, compared to the

total number of examples. Thus, learning algorithms are likely to over�t on samples

belonging to the larger class, thereby increasing the likelihood of poor generalization.

The weight-anisotropicity of the neighborhood function ensures that over�tting, while

not impossible, is much less likely because all weight values are constrained to remain

small, unless making them larger signi�cantly decreases the error.

79

www.manaraa.com

(Left) (Right)

Figure 19. Classi�cation error vs. training epoch, where µ+ σ are reported for each of
the three classi�cation problems (Wine-blue, Iris-green, and Cancer-red), for synaptic
annealing using an anisotropic GSA neighborhood function with a (Left) regression and
(Right) classi�cation training error function.

Regression Results.

In this section, the results produced by FFNNs trained using various con�gura-

tions of the synaptic annealing algorithm, when applied to the regression data sets,

are evaluated. The complicated interaction and harmonic functions described in Sec-

tion 4.1 are used to evaluate the performance of each variant of synaptic annealing.

The data sets are constructed by randomly and uniformly drawing 500 points from

the two-dimensional range of the functions. The regression performance is evaluated

using 10-fold cross validation, thus a training set of 400 samples and a validation set

of 100 samples are constructed for each fold.

Fig. 20 displays the regression performance of neural networks trained using synap-

tic annealing. Even the simplest variation of synaptic annealing, shown in Fig. 20

(Left-Top), is able to construct a neural network which closely approximates the

trial functions. For all synaptic annealing variants, the complicated interaction func-

tion is more easily approximated than the harmonic function. This is likely due to the

fact that the harmonic function has considerably more variance than the complicated

80

www.manaraa.com

(Left-Top) (Right-Top)

(Left-Bottom) (Right-Bottom)

Figure 20. This �gure contains one plot for each variant of the synaptic annealing
training algorithm. Each plot displays the time evolution of the 10-fold cross validated
mean and standard deviation of the regression error of neural networks trained using
a single synaptic annealing variant on each of the the function approximation data
sets. The synaptic annealing variants used in each plot are (Left-Top) Isotropic Gaus-
sian, (Right-Top) Isotropic Cauchy, (Left-Bottom) Isotropic GSA, and (Right-Bottom)
Anisotropic GSA.

interaction function.

The di�erences in regression performance are generally limited to the speed of

convergence to the �nal solution. Fig. 20 reveals that a GSA neighborhood function

yields a faster convergence on the harmonic function data set than a Cauchy neigh-

borhood function, which is in turn faster than a Gaussian neighborhood function.

The fastest convergence on the harmonic function is achieved by the anisotropic GSA

variant of synaptic annealing, though this variant converges to a higher-error solution.

81

www.manaraa.com

Table 6. This lists of parameter values chosen for the synaptic annealing experiments.

Back-Propagation Parameters
Parameter Value
Number of Hidden Layers 1
Hidden Layer Size 20
Initial Learning Rate (α) 0.01
Learning Rate Step Size 0.1
Learning Decrease Frequency 50, 000 epochs
Momentum Value 0.9

4.3 Back-Propagation Comparison

In order to evaluate the relative e�ectiveness of synaptic annealing, the results ob-

tained using synaptic annealing are compared to those obtained on the same problems

using back-propagation. A neural network is trained using the back-propagation algo-

rithm on each of the classi�cation problems used in this thesis. The back-propagation

parameters used in this comparison are listed in Table 6.

The same 10-fold cross validation procedure described in Section 4.1 is used to

evaluate the training of FFNNs on each of the classi�cation problems, using back-

propagation. Each of the three plots in Fig. 21 corresponds to one of the classi�cation

data sets. In each plot, the results obtained from each variant of synaptic annealing

are juxtaposed with the results obtained from back-propagation. These synaptic

annealing results are the same results displayed in Fig. 16, Fig. 17, Fig. 18, and

Fig. 19, grouped by data set, rather than by variant. Thus, Fig. 21 also enables the

direct comparison of synaptic annealing variants. In Section 4.2, synaptic annealing

variants trained using the regression cost function as the training cost function are

generally found to be superior to those using the classi�cation cost function. Thus,

only those results are compared in this section.

The results shown in Fig. 21 display several interesting performance characteris-

tics. First, directly comparing back-propagation (blue) to synaptic annealing reveals

82

www.manaraa.com

(Left-Top) (Right-Top)

(Bottom)

Figure 21. The classi�cation error (µ+σ) vs. training epochs for several FFNN training
algorithms for the (Left-Top) Wine, (Right-Top) Iris, and (Bottom) Cancer classi�ca-
tion data sets.

that, for the Iris data set (Right-Top), synaptic annealing generally �nds a lower-

error solution than back-propagation. All variants, except the Gaussian variant, have

a lower mean error than back-propagation. Anisotropic GSA synaptic annealing

(cyan) produces the lowest-error of all training algorithms; the mean of anisotropic

GSA synaptic annealing error is nearly a full standard deviation lower than that of

back-propagation. Isotropic GSA synaptic annealing is observed to perform nearly

as well as the anisotropic GSA. The Cauchy synaptic annealing variant also outper-

forms back-propagation, but results in a somewhat higher error than either of the

83

www.manaraa.com

GSA variants.

A similar relationship is observed between back-propagation and anisotropic GSA

synaptic annealing in Fig. 21(Bottom), which displays the results of each algorithm

on the Cancer data set. Again, anisotropic GSA synaptic annealing is found produce a

considerably lower error than all other evaluated algorithms. Additionally, anisotropic

GSA synaptic annealing is observed to be the only training algorithm which produces

a lower error than back-propagation on the Cancer data set.

The results obtained for the Wine data set (Bottom) present a di�erent trend

in performance than those observed for the Iris and Cancer data sets. For the Wine

data set, the lowest-error algorithm is synaptic annealing with a Cauchy neighborhood

function, which achieves perfect classi�cation in approximately 80000 epochs. Synap-

tic annealing with a Gaussian neighborhood function produces the second-lowest er-

ror. For the Wine data set all variants of synaptic annealing produce lower errors

than back-propagation. It should be noted, however, that the high variance shown

in the results for back-propagation are caused by the fact that perfect classi�cations

were found for several of the cross-validation folds very quickly, while low errors were

never achieved for other folds. This behavior is indicative of the sensitivity to initial

weight con�gurations of gradient descent methods. The large mean and variance of

classi�cation error observed for back-propagation, relative to the results for synaptic

annealing, highlights the robustness of stochastic search procedures.

4.4 Summary

In this chapter, a design of experiments is constructed and executed in order to

evaluate the e�ectiveness of anisotropic synaptic annealing as a FFNN weight selection

algorithm. Several variants of synaptic annealing are rigorously examined, compared,

and contrasted. The results obtained indicate that synaptic annealing, when using

84

www.manaraa.com

the anisotropic variant of GSA proposed in this thesis, is superior to both the FSA

and CSA variants for several trial problems. Finally, synaptic annealing is found to

select lower-error synaptic weight con�gurations than the back-propagation algorithm

for a �xed amount of computational resources.

85

www.manaraa.com

V. Conclusion

In this chapter the methodology, results, and analysis presented in this thesis is

summarized. Relevant conclusions regarding the e�cacy of synaptic annealing as a

machine learn algorithm are drawn. A discussion on the possibility of future work

related to the algorithm developed in this thesis is presented, and several speci�c,

actionable researcher paths are proposed. Finally, the chapter concludes with a brief

summary of the contributions made in this thesis.

5.1 Summary of Methods, Results, and Conclusions

The general aims of this thesis are to explore the application of simulated an-

nealing to the problem of feed-forward neural network (FFNN) weight selection, to

construct a formalism to concisely and completely describe the combination of SA and

FFNNs, and to rigorously evaluate the performance of the resultant machine learning

algorithms on several example problems to determine the validity of the methodology.

A detailed exposition of the de�nition and characteristics of both the SA metaheuris-

tic algorithm and FFNNs are presented. A novel formalism for combining the two

concepts is established and an algorithmic representations of the formalism is given.

In the most general sense, this metaheuristic algorithm, called synaptic annealing,

constructs a function which encodes a relation mapping a set of input vectors to a

set of output vectors. The synaptic annealing algorithm is left su�ciently general to

allow for many variations of SA to be implemented using Algorithm 2.

Algorithm 2 is then implemented using many variants of SA. The behavior of

the resultant algorithms are analyzed using visualizations of traversals of a two-

dimensional subspace of the complete weight space. The resulting visualizations

provide insight, which enable predictions, regarding the cost function minimization

86

www.manaraa.com

performance of the algorithm. These predictions are then evaluated using cross vali-

dation on several classi�cation and regression data sets.

5.2 Future Work

In the course of this work, several opportunities for expansion, extension, or modi-

�cation of the methodology constructed in this thesis were identi�ed. While pursuing

those avenues of inquiry were outside the scope of this work, many of them are

promising, and could lead to considerable performance enhancements. As such, those

suggestions are reproduced here as summary of possible future work

Methodology Extensions.

The �rst topics which should be studied in any future work extending the work

presented are those topics which are minor variations on the methodology presented

in Chapter III. A more thorough study of the e�ects of the variation of parameters in

all GSA neighborhood functions is warranted. In this thesis, the problem was scoped

such that all GSA visiting distribution implementations used the same values for the

parameters qV , TqV , and D. Those values were determined by empirically examining

the results produced by various parameter values and selecting those which resulted in

the best performance. It seems intuitively reasonable that an implementation which

uses a decreasing value for TqV , as is suggested in much of the literature [45, 46],

would produce a weight space traversal that is more local through the training epochs.

However, caution must be taken to ensure that deleterious interaction e�ects between

a decreasing learn rate and TqV do not emerge. Further study is required to determine

the impact of these e�ects.

In one application of GSA [49], it is suggested that lowering qV through training

time considerably decreases the time required for convergence of the GSA algorithm

87

www.manaraa.com

for certain types of problems. The problem present in [49] is super�cially similar to

the weight selection problem, and so this path could yield performance enhancements,

and should be considered in future work.

Hybrid Greedy Search Techniques.

Introducing a local greedy optimization algorithm, such as that described in [11],

could improve performance, as it would ensure that any local minima found is ex-

ploited fully before a global search is resumed. It would be particularly interesting

to compare the results of [11] using MOHGSA, to the synaptic annealing methodol-

ogy present in this thesis using a GSA visiting distribution and employing a gradient

descent algorithm which periodically performs steepest-descent on the local error sur-

face.

Reannealing.

Early analysis, not included in the present document, indicate that reannealing

produces a modest improvement in performance for all synaptic annealing algorithms.

An exploratory study of oscillatory variation in the temperature and learn rate pa-

rameters yielded encouraging preliminary results. Further study may yield additional

insights into the bene�ts of alternating global and local distribution characteristics

during a semi-local solution space search.

Novel Anisotropicity Policies.

A review of the relevant literature indicates that the concept of anisotropicity, as it

relates to traversal through the synaptic weight space during neural network training,

is an unexplored concept. The idea is introduced and formalized in this work, but the

scope of investigation prevents a thorough exploration of possible implementations

88

www.manaraa.com

of anisotropicity. It is possible that some anisotropicity policy could reduce the size

of the synaptic weight space in such a way that the resultant unreachable regions

of the space are always of higher cost than the reachable ones. If constructed, such

an anisotropicity could result in training algorithms which spend less time searching

high cost solutions, and would thereby speed up convergence. One such an anisotrop-

icity policy, weight-based anisotropicity, is evaluated in this work, but others may be

constructed and evaluated.

5.3 Contributions

This thesis makes several contributions to the machine learning research commu-

nity. The �rst application of GSA to the neural network weight selection is described

in this thesis. This application is shown to be e�ective for a large class of prob-

lems, which indicates that it may be fruitfully applied to a broader class of problems.

Due to the complexity of generating samples from the GSA distribution, a procedure

which quickly produces samples is presented. This procedure is realized as a library,

which is applicable to future applications of the GSA distribution. The most complete

analysis yet conducted of the application of simulated annealing to the problem of

FFNN weight selection is presented in this thesis document. Though other work has

explored this combination of algorithms [11], this thesis contains a complete analysis

of the algorithm development, as well as a general algorithm (Algorithm 2) which

may be implemented and applied to new problems. In the course of developing this

algorithm, a formalism of synaptic annealing is constructed, upon which future work

can be built.

89

www.manaraa.com

Appendix A. Recursively-De�ned Dot Product Neural

Network Propagation

There are many competing conventions [10] for neural network notation and rep-

resentation. In this appendix, a complete representation for both a neural network

data structure, or neural substrate, and the signal propagation operation on that sub-

strate are proposed and described. Two variation of the substrate will be considered,

and the the asymptotic computational complexity of the signal propagation algorithm

will be analyzed using both substrate representations; the advantages and limitations

of each will be explored. The purpose of the notation proposed in this appendix is

to concisely and intuitively represent all possible neurocomputational structures, and

to explore the computational complexity of algorithms which operate on structures

de�ned using that notation.

1.1 Mathematical Framework

All neural networks are graphs. Thus, it is natural to use the techniques of graph

theory to represent and analyze neurocomputational structures. A neural network

may be encoded as a weight matrix, wherein each edge weight corresponds to a single

synaptic weight in the neural network. This representation preserves all information

about the structure of the neural network, and the strengths of the connections be-

tween neurons. This synaptic weight matrix serves as the foundation of the neural

90

www.manaraa.com

(Left-Top) (Right)

Figure 22. (Left) A visualization of ω corresponding to a feed-forward neural network.
(Right) A visualization of ω corresponding to a recursive neural network.

network notation scheme proposed in this thesis, and will be represented by

ω =



ω11 ω12 ω13 . . . ω1n

ω21 ω22 ω23 . . . ω2n

ω31 ω32 ω33 . . . ω3n

...
...

...
. . .

...

ωn1 ωn2 ωn3 . . . ωnn


, (58)

where ωij encodes the synaptic weight of the connection from neuron i to neuron j.

Neural networks of di�erent types will produce weight matrices with distinct charac-

teristics. Fig. ?? shows randomly constructed synaptic weight matrices which corre-

spond to feed-forward (Left-Top) and recursive (Right) neural networks. Note that

the synaptic weight matrix corresponding to feed-forward neural network is relatively

sparse.

All neural networks operate on data. Thus, a notation is required to represent the

data on which the neural networks will operate. Most neural networks are trained by

a supervised learning algorithm which seeks to minimize some heuristic cost function.

91

www.manaraa.com

The cost function is de�ned on the a pair of data structures: the output produced

by a neural network, when presented with an input pattern, and the true output for

that input pattern. In the most abstract sense, a well-constructed neural network

solves the problem of mapping a set of input patterns to a set of output patterns. An

individual instance of the input-output mapping problem can be represented as an

ordered pair of input and output patterns, such as

(χ, λ) = {{χ}, {χ, λ}}, (59)

where χ is the input pattern, and λ is the true output pattern, or label1, associated

with χ. A neural network training problem is therefore simply a set of ordered pairs,

or relation, which will be notated as X in this work. A single pattern-label pair is

called an observation, whereas a set of pattern-label pairs is called the data set.

With the synaptic weight matrix and data set notation in place, it is possible to

construct a notation which represents the propagation of an input pattern, χ, through

the network to produce an output pattern, ϕ, against which the label pattern, λ, can

be compared. First, observe that the propagation through a single neuron is the

output the activation function of the neuron, given the sum of the input neurons

times the respective synaptic weight for each input, which is given by

o = fA(w1i1 + w2i2 + · · ·+ wmim) (60)

where o is the output of the neuron, fA is the activation function, wn is the synaptic

weight value for input n, in is the input value for input n, and m is the number of

inputs. Clearly, the argument of fA is the inner produce of two vectors of length m,

so it is possible to represent as least the summation component of the propagation of

1The symbol λ is adopted in this work because the output pattern in a classi�cation problem is
often called the label of the input data.

92

www.manaraa.com

a single neuron in terms of vectors. Dirac's bra-ket notation for vectors and matrices

will be adopted in this work, because of its elegance and conciseness. Thus, a column

vector, or ket, which represents the synaptic weight values of the inputs is de�ned as

|w〉 =



w1

w2

...

wm


, (61)

and a row vector, or bra, which represents the input values is given by

〈i| =
[
i1 i1 . . . im

]
. (62)

The argument to fA is therefore given by

〈i|w〉 =

[
i1 i1 . . . im

]
·



w1

w2

...

wm


= (w1i1 + w2i2 + · · ·+ wmim). (63)

So, the propagation output of an individual neuron can now be expressed as

o = fA(〈i|w〉). (64)

An algorithm which accomplishes the operation described by this notation has com-

plexity O(m), because exactly m multiplications, and at most m summations, are

required to compute the dot product of two vectors.

This notation can be further extended to include the fA as a matrix operation, so

long as fA can be approximated by a power series. In order to construct this formal-

93

www.manaraa.com

ism, a new vector, |c〉, is introduced. |c〉 is a vector of length C which contains the

�rst C coe�cient of a power series expansion which approximates fA. Additionally,

a column vector containing the sequential powers of the weighted-input dot produce

is de�ned as |ρ〉 such that

|%〉 =



〈i|w〉0

〈i|w〉1

...

〈i|w〉C


. (65)

Using these vectors, the power series approximation of fA(〈i|w〉) is given by

fA(〈i|w〉) ≈ 〈c|%〉 = 〈1|





c0

c1

...

cC


◦



〈i|w〉0

〈i|w〉1

...

〈i|w〉C




=

C∑
j=0

cj〈i|w〉j. (66)

The Hadamard product notation is included in Eq. (66) because it will be useful when

scaling this framework to describe the propagation of many neurons simultaneously.

In practice, this notation can be realized by an algorithm which runs in O(C)

time, because only C multiplications and additions are required. This is slower than

the fastest implementation of many activation functions, which run in constant time.

However, the notation is convenient, and has two advantages over a standard func-

tional calculation. First, this matrix formulation of the activation function enables

each neuron in the network to have a di�erent activation function. Second, the ma-

trix implementation of fA enables the construction of arbitrary activation functions,

e�ectively enabling the exposure of the activation function as a learned parameter in

a metaheuristic weight selection algorithm, such as simulated annealing.

94

www.manaraa.com

To extend the propagation notation de�ned in the preceding paragraph to the

entire network, recall that the dot product of a row vector and a matrix yields a row

vector in which each element is the dot product of the vector and a column of the

matrix. Further, observe that in the weight matrix ω, given by Eq. (58), column n

represents the synaptic weights of the input synapses neuron n, and is thus analogous

to the vector |w〉 in Eq. (61). Finally, note that X may be represented as (〈χ|, 〈λ|),

where both 〈χ| and 〈λ| are row vectors which have been padded with 0 to be of length

n. Thus, 〈χ| is a vector which represents the input to each neuron in the network,

and is therefore analogous to 〈i| in Eq. (62). Combining these observations, it is clear

that 〈χ|ω yields a row vector in which each element is the weighted sum of inputs to

a neuron in the network.

Each element of the weighted sum of inputs vector must be transformed by the

activation function of the neuron to which is corresponds. The activation functions

of all the neurons in the network can be represented by a single C×n matrix, c, such

as

c =



c01 c02 . . . c0n

c11 c12 . . . c1n

c21 c22 . . . c2n

...
...

. . .
...

cC1 cC2 . . . cCn


(67)

wherein each column corresponds to the power series coe�cients of a single neuron. A

complementary C×nmatrix, comprising the sequential powers of the sum of weighted

95

www.manaraa.com

inputs to each neuron, can then be constructed as

ρ =



[〈i|ω]0

[〈i|ω]1

...

[〈i|ω]C


. (68)

Given these matrix de�nitions, the power series transform of 〈i|ω, and therefore the

output of the each neuron in the network, given the input vector i, is given by

〈ϕ| = 〈1|(c ◦ ρ) = 〈1|



c01 c02 . . . c0n

c11 c12 . . . c1n

c21 c22 . . . c2n

...
...

. . .
...

cC1 cC2 . . . cCn


◦



[〈i|ω]◦0

[〈i|ω]◦1

[〈i|ω]◦2

...

[〈i|ω]◦C


. (69)

Thus, 〈ϕ|, is a vector in which each element is the output of a neuron in the network.

〈ϕ| can be computed from ω, i, and c in O(n2 + Cn) time. The two terms of the

complexity function arise from the fact that C is arbitrary and therefore may be

larger than n. If C is larger than n, the Hadamard product of ρ and c, which runs

in O(Cn), would become the fundamental operation, rather than the calculation of

〈i|ω, which requires O(n2) time. If a �xed activation function which is O(n2) is used,

the complexity of the calculation of 〈ϕ| is O(n2).

The calculation of 〈ϕ| yields the output of each neuron after an input pattern2

is propagated into the network. In this framework, each neuron performs a single

neurocalcalution, which is a summation of inputs and nonlinear transform of the

2In practice, unless the network is a dense graph, most of the elements of the input pattern will
be zero. Consider the �rst propagation of a feed-forward neural network: Only the �rst layer of
neurons will be nonzero. In the second propagation, only the second layer will be nonzero, etc.

96

www.manaraa.com

sum, during each calculation of 〈ϕ|. However, it is generally the case that several

sequential propagations are required to completely propagate a pattern through a

network. Fortunately, this notation readily incorporates sequential propagations.

To see how sequential propagations can be computed, observe that the structure

of the synaptic weight matrix, ω, is such that the output from each neuron, 〈ϕ|, is

intrinsically formatted to serve as the input pattern pattern for another propaga-

tion. Since 〈ϕ| is properly formatted to represent both input and output patterns, a

recursive de�nition of 〈ϕ| can be constructed as

〈ϕi| = 〈1|(c ◦ ρi−1) = 〈1|



c01 c02 . . . c0n

c11 c12 . . . c1n

c21 c22 . . . c2n

...
...

. . .
...

cC1 cC2 . . . cCn


◦



[〈ϕi−1|ω]◦0

[〈ϕi−1|ω]◦1

[〈ϕi−1|ω]◦2

...

[〈ϕi−1|ω]◦C


, (70)

which indicates that the output pattern of the network is a function of the synaptic

weights ω, activation functions c, and the previous output pattern of the network

ϕ
i−1. This recursion requires a base case, in order to introduce structured patters

into the network; that base case is given by

〈ϕ0| = 〈χ|, (71)

where χ is an input pattern from a data set, as de�ned in Eq. 59. Thus, the output

of a of each neuron in a network after i sequential propagations is given by 〈ϕi|. The

complexity of computing 〈ϕi| is O(in2 + iCn)

The propagation notation can be further generalized to include time-series input

patterns by observing that an input pattern is just an additional signal from the

97

www.manaraa.com

preceding propagation. So, the recursion can be rede�ned as

〈ϕi| = 〈1|(c ◦ ρi−1) = 〈1|



c01 c02 . . . c0n

c11 c12 . . . c1n

c21 c22 . . . c2n

...
...

. . .
...

cC1 cC2 . . . cCn


◦



[(〈ϕi−1|+ 〈χi−1|)ω]◦0

[(〈ϕi−1|+ 〈χi−1|)ω]◦1

[(〈ϕi−1|+ 〈χi−1|)ω]◦2

...

[(〈ϕi−1|+ 〈χi−1|)ω]◦C


, (72)

with a base case of

〈ϕ0| = 〈0|. (73)

This formulation has asymptotically equivalent time complexity to the single-input

form.

The �nal form of the notation is somewhat cumbersome due to the power series

expansion computation. In order to reduce this complexity, a new operator, f©, which

performs the Hadamard power matrix expansion, the Hadamard product, and the unit

dot product. This new operator will be called the transformation operator, and is

de�ned as

〈ϕi| = 〈1|(c ◦ ρi−1) ≡ c f©〈ϕi−1 + χ
i−1|ω, (74)

and should be read as c transforms 〈ϕi−1 + χ
i−1|ω. The transformation operator is

a binary operator which requires that the left argument is a matrix and the right

argument is a row vector of the same width as the right argument matrix.

With the preceding mathematical framework fully constructed, it is now possible

to construct an algorithmic representation of recursion de�ned in equations 70 and 71.

Because time series inputs will not be used in the scope of this work, and because they

98

www.manaraa.com

do not alter the asymptotically complexity of the algorithm, all algorithmic analysis

will be restricted to equations 70 and 71. A pseudocode representation of these

equations is given in Algorithm 3. The pseudocode representation of the transform

subroutine, which implements the transform operator de�ned in Eq. (74), is shown

in Algorithm 4. The �xed activation function form of the algorithm is recovered by

replacing transform(c, ·) with fA(·).

Algorithm 3 A pseudocode representation of the recursive dot product neural net-
work pattern propagation algorithm. Inputs : i, the number of propagations to be
completed, which is also the recursion depth. ω, an n × n synaptic weight matrix.
c, a C × n matrix encoding the power series coe�cients for each neurons activation
function. χ, a vector of length n encoding the input pattern. output : a vector of
length n encoding the output pattern of the neural network de�ned by ω and c, given
i propagations and the input pattern χ.
1: procedure dotprop(i, ω, c, χ) .
2: if i = 0 then return χ . Return the input pattern.
3: else return transform(c, dot(DOTPROP(i− 1, ω, c, χ), ω))

4: end if
5: end procedure

Algorithm 4 A pseudocode representation of the matrix-based power series trans-
formation algorithm. Inputs : c, a C×n matrix encoding the power series coe�cients
for each neurons activation function. v, a vector of length n encoding the pattern
which is transformed by the power series expansion using the coe�cients stored in
c. output : a vector of length n encoding the power-series transformed values of the
input vector, v.
1: procedure transform(c, v)
2: i← −1 . Initialize i
3: ρ ← [(vi+=1) for row ∈ rows(c)] . Construct the power matrix
4: return sum(c ◦ ρ ,1) . Return the column sum of the element-wise matrix

product
5: end procedure

The theoretically-predicted time complexity of the calculation of 〈ϕi| was evalu-

ated experimentally, and the results are show in Fig. 23. The results agree well with

the predicted O(n2) complexity3. As can be seen in Fig. 23 (Left), the running time

3All results were produced using a system in which C < n.

99

www.manaraa.com

of the algorithm calculating the output pattern, 〈ϕi|, is O(n2).

(Left) (Right)

Figure 23. (Left) The running time of the Algorithm 3 in n, the number of neurons
in the network. (Right) The running time of the Algorithm 3 in ns, the number of
synaptic weights in the network, which, in this network is equal to n2 − n.

1.2 Application to Feed-Forward Neural Networks

This notation can be easily applied to describe the operation of feed-forward neural

networks. Consider a feed-forward network with L layers. This results in a weight

matrix, ω, which is a block matrix with L − 1 adjacent blocks, as can be seen in

Fig. ?? (Left). Thus, L− 1 propagations are required to propagate an input pattern

through the network, as L − 1 propagations will result in a dot product applied to

each of the blocks. Using this notation, the notation for the output of propagating a

pattern through a feed-forward neural network is simply 〈ϕL−1|. The time complexity

of feed-forward network propagation is then O((L − 1)(n2 + Cn)) which reduces to

O(Ln2 + LCn).

A signi�cant portion of the computation required to compute the propagation

through a feed-forward neural network using the preceding framework is unnecessary.

Because the synaptic weight matrix of a feed-forward neural network is sparse, due to

100

www.manaraa.com

the lack of recursive connections, most of the multiplications in the dot product com-

putation involve a zero, and therefore do not impact the propagation pattern. The

general propagation notation framework can be modi�ed slightly to gain dramatic

reductions in computational complexity for some feed-forward neural networks. Con-

sider that the connection between each layer in a feed forward neural network is a

block matrix in the upper triangle of the synaptic weight matrix. The propagation

and transformation operations only need to operate on these block matrices, and

never on the entire synaptic matrix. Thus, in the speci�c case of a feed forward neu-

ral network, these block matrices should be excised from the weight matrix, in blocks

that are the size of the largest layer in the neural network. The recursive formula for

calculating the output pattern produced by propagating a pattern through these net-

works is unchanged, except that the weight matrix is a di�erent, equally-sized, block

matrix at each recursive depth. This set of block matrices can be easily represented

a three dimensional matrix of size nmax × nmax × (L− 1), which will be called layer

matrices. Also, time series inputs are not generally allowed in feed forward neural

networks, so this feature is removed. This recursive relationship is given by

〈ϕi| = c f©〈ϕi−1|ωi, (75)

with a base case of

〈ϕ0| = 〈χ0|. (76)

The layer matrix representation of a feed-forward neural network ensures that the

largest matrix considered is of size nmax×nmax, where nmax is the number of neurons

in the largest layer. The computational complexity associating with completing a full

propagation through the network is therefore O(Ln2
max + LCnmax). This predicted

101

www.manaraa.com

computational complexity is validated in Fig. 24 which shows the running time per-

formance of the layer matrix representation of recursive dot propagation algorithm.

Fig. 24 also displays the running time performance of the standard dot propagation

algorithm; it is clear that both versions of the algorithm are of running time com-

plexity O(n2), with respect to the number of neurons in the network, as expected.

However, the layer matrix version of the algorithm has a considerably smaller mul-

tiplicative constant. Interestingly, when considering the time complexity of the two

algorithms in the number of synaptic weights, the layer matrix has a higher multi-

plicative constant. This phenomena emerges from the fact that a feed-forward neural

network is necessarily more sparsely connected that a fully-connected recursive neural

network, for a given number of neurons.

(Left) (Right)

Figure 24. (Left) The running time of the Algorithm 3, employing a layer matrix
representation, in n, which is the number of neurons in the network. (Right) The
running time of the Algorithm 3, employing a layer matrix representation, in ns, which
is the number of synaptic weights in the network.

Note that nmax is guaranteed to be less than n, and that the speedup, s, that

results from this change is given by

O(Ln2 + LCn)

O(Ln2
max + LCnmax)

∝ n2

n2
max

. (77)

102

www.manaraa.com

Figure 25. The speedup obtained by employing the layer matrix version of the dot
propagation algorithm, relative to the weight matrix version of the algorithm, for a
feed-forward neural network. The speedup was calculated for networks of varying
depth and size.

Observe, also, that n ∝ L because each layer must comprise at least a single neuron;

thus as L→∞, s→∞. Thus, adding a layer increases the computational complexity

linearly, while increasing the number of learned parameters in the network by a factor

of n2
max. The theoretically predicted computational complexity was experimentally

validated; the results of these experiments are shown in Fig. ??. The networks from

which the results in Fig. ?? are derived were constructed by selecting a number of

layers and then increasing the value of nmax sequentially. Each layer count, L, and

nmax value, a network with L layers and nmax neurons per layer was constructed. The

performance of the constructed network was evaluated using both the full-matrix and

block-matrix versions of the propagation algorithm, and the speedup was calculated.

103

www.manaraa.com

1.3 Implementation Considerations

The matrix dot product, which will be the fundamental operation in any imple-

mentations of this framework, is readily parallelizable. A thread can be spawned to

solve each column, as there is no interdependence between columns. This reduces the

computation complexity of calculating 〈ϕi| to O(in + iC), assuming that there are

more available threads than neurons in the network.

Additionally, many neural networks training algorithms require the calculation of

the squared Euclidean distance between a desired output vector, 〈λ|, and the actual

output vector, 〈ϕ|. This quantity is easily obtained using the notation developed in

this work. Consider that the Euclidean distance from an arbitrary vector, v, to origin

is given by 〈v|v〉, as this quantity is the sum of the squared elements of v, minus

0. Further, observe that the elements of the vector 〈λ− ϕ| are simply the di�erence

between the corresponding elements of 〈λ| and 〈ϕ|. Then, the squared Euclidean

distance between 〈λ| and 〈ϕ| is given by 〈λ − ϕ|λ − ϕ〉. The computation of this

quantity is a dot product, and therefore requires only O(n) time, where n = |〈λ|| =

|〈ϕ||.

104

www.manaraa.com

Bibliography

1. P. Lops, M. de Gemmis, and G. Semeraro, �Content-based recommender

systems: State of the art and trends.� in Recommender Systems Handbook,

F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Eds. Springer, 2011, pp.

73�105. [Online]. Available: http://dblp.uni-trier.de/db/reference/rsh/rsh2011.

html#LopsGS11

2. M. Richardson, A. Prakash, and E. Brill, �Beyond pagerank: machine learning for

static ranking,� in WWW '06: Proceedings of the 15th international conference

on World Wide Web. New York, NY, USA: ACM Press, 2006, pp. 707�715.

[Online]. Available: http://portal.acm.org/citation.cfm?id=1135777.1135881

3. G. Klambauer, �Machine learning techniques for the analysis of high-throughput

dna and rna sequencing data.� Ph.D. dissertation, UniversitÃ¤t Linz, 2014.

4. T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learn-

ing. Springer Verlag, August 2001.

5. S. B. Kotsiantis, �Supervised machine learning: A review of classi�cation

techniques.� Informatica (Slovenia), vol. 31, no. 3, pp. 249�268, 2007. [Online].

Available: http://dblp.uni-trier.de/db/journals/informaticaSI/informaticaSI31.

html#Kotsiantis07

6. X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda,

G. McLachlan, A. Ng, B. Liu, P. Yu, Z.-H. Zhou, M. Steinbach, D. Hand,

and D. Steinberg, �Top 10 algorithms in data mining,� Knowledge and

Information Systems, vol. 14, no. 1, pp. 1�37, Jan. 2008. [Online]. Available:

http://dx.doi.org/10.1007/s10115-007-0114-2

105

www.manaraa.com

7. J. Schmidhuber, �Deep learning in neural networks: An overview,�

Neural Networks, vol. 61, pp. 85 � 117, 2015. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0893608014002135

8. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen,

C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,

S. Legg, and D. Hassabis, �Human-level control through deep reinforcement

learning,� Nature, vol. 518, no. 7540, pp. 529�533, Feb. 2015. [Online]. Available:

http://dx.doi.org/10.1038/nature14236

9. T. Weyand, I. Kostrikov, and J. Philbin, �Planet - photo geolocation with convo-

lutional neural networks,� ArXiv e-prints, Feb. 2016.

10. S. Haykin, Neural networks: a comprehensive foundation. Upper Saddle River,

N.J: Prentice Hall, 1999.

11. Y. Lee, J.-S. Lee, S.-Y. Lee, and C. H. Park, �Improving generalization

capability of neural networks based on simulated annealing.� in IEEE Congress

on Evolutionary Computation. IEEE, 2007, pp. 3447�3453. [Online]. Available:

http://dblp.uni-trier.de/db/conf/cec/cec2007.htm

12. J. Engel, �Teaching feed-forward neural networks by simulated annealing,�

Complex Syst., vol. 2, no. 6, pp. 641�648, Dec. 1988. [Online]. Available:

http://dl.acm.org/citation.cfm?id=65512.65514

13. W. S. McCulloch and W. Pitts, �Neurocomputing: Foundations of research,�

J. A. Anderson and E. Rosenfeld, Eds. Cambridge, MA, USA: MIT Press,

1988, ch. A Logical Calculus of the Ideas Immanent in Nervous Activity, pp.

15�27. [Online]. Available: http://dl.acm.org/citation.cfm?id=65669.104377

106

www.manaraa.com

14. G. Piccinini, �Computational explanation in neuroscience,� Synthese, vol. 153,

no. 3, pp. 343�353, 2006.

15. N. Rochester, J. Holland, L. Haibt, and W. Duda, �Tests on a cell assembly theory

of the action of the brain, using a large digital computer,� Information Theory,

IRE Transactions on, vol. 2, no. 3, pp. 80�93, September 1956.

16. W. James, The Principles of Psychology, ser. American science series:

Advanced course. H. Holt, 1890, no. v. 1. [Online]. Available: https:

//books.google.com/books?id=deOLTt-dD3gC

17. D. O. Hebb, The organization of behavior; a neuropsychological theory, (by) D.O.

Hebb. Science Editions. New York: John Wiley and Sons, 1967.

18. F. Rosenblatt, �The perceptron: A probabilistic model for information storage

and organization in the brain,� Psychological Review, vol. 65, no. 6, pp. 386�408,

1958.

19. J. A. Anderson and E. Rosenfeld, Eds., Neurocomputing: Foundations

of Research. Cambridge, MA: MIT Press, 1988. [Online]. Available:

http://mitpress.mit.edu/book-home.tcl?isbn=0262510480

20. H. D. Block, �The perceptron: A model for brain functioning,� Reviews of Modern

Physics, vol. 34, pp. 123�135, 1962.

21. B. Widrow and M. E. Ho�, �Adaptive switching circuits,� in 1960 IRE

WESCON Convention Record, Part 4, Institute of Radio Engineers. New

York: Institute of Radio Engineers, 8 1960, pp. 96�104. [Online]. Available:

http://www-isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf

22. M. Minsky and S. Papert, Perceptrons. Cambridge, MA: MIT Press, 1969.

107

www.manaraa.com

23. J. A. Anderson, �A simple neural network generating an interactive memory,�

Mathematical Biosciences, vol. 14, pp. 197�220, 1972.

24. T. Kohonen, �Correlation matrix memories,� IEEE Trans. Comput., vol. 21,

no. 4, pp. 353�359, Apr. 1972. [Online]. Available: http://dx.doi.org/10.1109/

TC.1972.5008975

25. C. von der Malsburg, �Self-organization of orientation sensitive cells in the striate

cortex.�

26. S. E. Brodie, B. W. Knight, and F. Ratli�, �The response of the Limulus retina to

moving stimuli: a prediction by Fourier synthesis,� J Gen Physiol, vol. 72, no. 2,

pp. 129�66, Aug. 1978.

27. J. J. Hop�eld, �Neural networks and physical systems with emergent

collective computational abilities,� Proceedings of the National Academy of

Sciences of the United States of America, vol. 79, 1982. [Online]. Available:

http://view.ncbi.nlm.nih.gov/pubmed/6953413]

28. D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, �A learning algorithm for boltz-

mann machines,� Cognitive Science, vol. 9, no. 1, pp. 147�169, 1985.

29. A. G. Barto, R. S. Sutton, and C. W. Anderson, �Arti�cial neural networks,�

J. Diederich, Ed. Piscataway, NJ, USA: IEEE Press, 1990, ch. Neuronlike

Adaptive Elements That Can Solve Di�cult Learning Control Problems, pp.

81�93. [Online]. Available: http://dl.acm.org/citation.cfm?id=104134.104143

30. P. Werbos, �Beyond regression: New tools for prediction and analysis in the

behavioral sciences,� Ph.D. dissertation, Harvard University, 1974.

31. A. E. Bryson and Y. C. Ho, Applied Optimal Control. New York: Blaisdell,

1969.

108

www.manaraa.com

32. D. B. Parker, �Learning logic,� Center for Computational Research in Economics

and Management Science, Massachusetts Institute of Technology, Cambridge,

MA, Tech. Rep. TR-47, 1985.

33. Y. Lecun, �Une procédure d'apprentissage pour réseau à seuil asymétrique,� Pro-

ceedings of Cognitiva 85, Paris, pp. 599�604, 1985.

34. D. Rumelhart, G. Hinton, and R. Williams, Learning Internal Representations by

Error Propagation, 1986.

35. G. Cybenko, �Approximation by superpositions of a sigmoidal function,�

Mathematics of Control, Signals and Systems, vol. 2, no. 4, pp. 303�314, 1989.

[Online]. Available: http://dx.doi.org/10.1007/BF02551274

36. R. S. Sexton, R. E. Dorsey, and J. D. Johnson, �Beyond back propagation:

Using simulated annealing for training neural networks,� J. End User

Comput., vol. 11, no. 3, pp. 3�10, Jul. 1999. [Online]. Available:

http://dl.acm.org/citation.cfm?id=329748.329752

37. S. S. Beheraa and S. Chattopadhyay, �A comparative study of back propaga-

tion and simulated annealing algorithms for neural net classi�er optimization,�

Procedia Engineering, vol. 28, pp. 448�455, 2012.

38. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, �Optimization by simulated an-

nealing,� SCIENCE, vol. 220, no. 4598, pp. 671�680, 1983.

39. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,

�Equation of State Calculations by Fast Computing Machines,� vol. 21, pp. 1087�

1092, Jun. 1953.

109

www.manaraa.com

40. W. L. Go�e, G. D. Ferrier, and J. Rogers, �Global optimization of statistical

functions with simulated annealing,� Journal of Econometrics, vol. 60, pp. 65�

99, 1994.

41. A. Corana, M. Marchesi, C. Martini, and S. Ridella, �Minimizing multimodal

functions of continuous variables with the “simulated annealing”

algorithmcorrigenda for this article is available here,� ACM Trans. Math.

Softw., vol. 13, no. 3, pp. 262�280, Sep. 1987. [Online]. Available:

http://doi.acm.org/10.1145/29380.29864

42. A. Lecchini-Visintini, J. Lygeros, and J. Maciejowski, �Simulated Annealing: Rig-

orous �nite-time guarantees for optimization on continuous domains,� ArXiv e-

prints, Sep. 2007.

43. H. Szu and R. Hartley, �Fast simulated annealing,� Physics Letters A,

vol. 122, no. 3-4, pp. 157�162, Jun. 1987. [Online]. Available: http:

//dx.doi.org/10.1016/0375-9601(87)90796-1

44. L. Ingber, �Very fast simulated re-annealing,� 1989.

45. C. Tsallis and D. A. Stariolo, �Generalized simulated annealing,� Physica

A: Statistical and Theoretical Physics, vol. 233, no. 1-2, pp. 395�406,

Nov. 1996. [Online]. Available: http://www.sciencedirect.com/science/article/

B6TVG-3YK5TC8-2H/1/d040f1408073d6a09dc185f38673e3dd

46. A. Dall'Igna J, R. S. Silva, K. C. Mundim, and L. E. Dardenne, �Performance and

parameterization of the algorithm Simpli�ed Generalized Simulated Annealing,�

Genetics and Molecular Biology, vol. 27, pp. 616 � 622, 00 2004.

47. J. A. Freitez, M. Sanchez, and F. Ruette, �Comparative analysis of simulated

annealing (sa) and simpli�ed generalized sa (sgsa) for estimation optimal of para-

110

www.manaraa.com

metric functional in cativic,� AIP Conference Proceedings, vol. 1148, no. 1, pp.

404�407, 2009.

48. P. D. Moral and L. Miclo, �On the convergence and applications of generalized

simulated annealing,� SIAM Journal on Control and Optimization, vol. 37, no. 4,

pp. 1222�1250, 1999.

49. Y. Xiang, D. Sun, W. Fan, and X. Gong, �Generalized simulated annealing al-

gorithm and its application to the thomson model,� Physics Letters A, vol. 233,

no. 3, pp. 216 � 220, 1997.

50. S. Mukherjee and B. K. Chakrabarti, �Multivariable optimization: Quantum

annealing and computation,� European Physical Journal Special Topics, vol. 224,

p. 17, Feb. 2015.

51. I. Andricioaei and J. E. Straub, �Generalized simulated annealing algorithms

using tsallis statistics: Application to conformational optimization of a

tetrapeptide,� Phys. Rev. E, vol. 53, pp. R3055�R3058, Apr 1996. [Online].

Available: http://link.aps.org/doi/10.1103/PhysRevE.53.R3055

52. C. L. Blake and C. J. Merz, �UCI repository of machine learning databases,�

http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.

111

www.manaraa.com

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

6–17–2016 Master’s Thesis Jan 2015 — June 2016

Synaptic Annealing: Anisotropic Simulated Annealing and its
Application to Neural Network Synaptic Weight Selection

Fletcher, Justin R., 1st Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-16-J-060

Intentionally Left Blank

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Neural networks are one of the most successful classes of machine learning algorithm, and have been applied to solve
problems previously considered to be the exclusive domain of human intellect. Several methods for constructing neural
networks exists. This research explores the effectiveness of a feed-forward neural network weight selection procedure
called synaptic annealing. Synaptic annealing is the application of the simulated annealing algorithm to the problem of
selecting synaptic weights. A novel extension of the simulated annealing algorithm, called anisotropicity, is defined and
developed. The cross-validated performance of each synaptic annealing algorithm is evaluated, and compared to
back-propagation when trained on several typical machine learning problems. Synaptic annealing is found to be more
effective than back-propagation training on classification and regression data sets. These improvements in feed-forward
neural network training performance indicate that synaptic annealing may be a viable alternative to back-propagation in
many applications of neural networks.

Neural Networks, Simulated Annealing

U U U U 127

Dr. Gilbert L. Peterson, AFIT/ENG

(937) 255-3636 x4281; gilbert.peterson@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	6-16-2016

	Synaptic Annealing: Anisotropic Simulated Annealing and its Application to Neural Network Synaptic Weight Selection
	Justin R. Fletcher
	Recommended Citation

	tmp.1511802534.pdf.bb0zz

